org.apache.hadoop.mapred.ReduceTask Maven / Gradle / Ivy
The newest version!
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.mapred;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
import java.util.SortedSet;
import java.util.TreeSet;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DataInputBuffer;
import org.apache.hadoop.io.RawComparator;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableFactories;
import org.apache.hadoop.io.WritableFactory;
import org.apache.hadoop.io.SequenceFile.CompressionType;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.DefaultCodec;
import org.apache.hadoop.mapred.SortedRanges.SkipRangeIterator;
import org.apache.hadoop.mapred.TaskTracker.TaskInProgress;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.TaskCounter;
import org.apache.hadoop.mapreduce.server.jobtracker.JTConfig;
import org.apache.hadoop.mapreduce.task.reduce.Shuffle;
import org.apache.hadoop.util.Progress;
import org.apache.hadoop.util.Progressable;
import org.apache.hadoop.util.ReflectionUtils;
/** A Reduce task. */
@InterfaceAudience.Private
@InterfaceStability.Unstable
public class ReduceTask extends Task {
static { // register a ctor
WritableFactories.setFactory
(ReduceTask.class,
new WritableFactory() {
public Writable newInstance() { return new ReduceTask(); }
});
}
private static final Log LOG = LogFactory.getLog(ReduceTask.class.getName());
private int numMaps;
private CompressionCodec codec;
{
getProgress().setStatus("reduce");
setPhase(TaskStatus.Phase.SHUFFLE); // phase to start with
}
private Progress copyPhase;
private Progress sortPhase;
private Progress reducePhase;
private Counters.Counter shuffledMapsCounter =
getCounters().findCounter(TaskCounter.SHUFFLED_MAPS);
private Counters.Counter reduceShuffleBytes =
getCounters().findCounter(TaskCounter.REDUCE_SHUFFLE_BYTES);
private Counters.Counter reduceInputKeyCounter =
getCounters().findCounter(TaskCounter.REDUCE_INPUT_GROUPS);
private Counters.Counter reduceInputValueCounter =
getCounters().findCounter(TaskCounter.REDUCE_INPUT_RECORDS);
private Counters.Counter reduceOutputCounter =
getCounters().findCounter(TaskCounter.REDUCE_OUTPUT_RECORDS);
private Counters.Counter reduceCombineInputCounter =
getCounters().findCounter(TaskCounter.COMBINE_INPUT_RECORDS);
private Counters.Counter reduceCombineOutputCounter =
getCounters().findCounter(TaskCounter.COMBINE_OUTPUT_RECORDS);
// A custom comparator for map output files. Here the ordering is determined
// by the file's size and path. In case of files with same size and different
// file paths, the first parameter is considered smaller than the second one.
// In case of files with same size and path are considered equal.
private Comparator mapOutputFileComparator =
new Comparator() {
public int compare(FileStatus a, FileStatus b) {
if (a.getLen() < b.getLen())
return -1;
else if (a.getLen() == b.getLen())
if (a.getPath().toString().equals(b.getPath().toString()))
return 0;
else
return -1;
else
return 1;
}
};
// A sorted set for keeping a set of map output files on disk
private final SortedSet mapOutputFilesOnDisk =
new TreeSet(mapOutputFileComparator);
public ReduceTask() {
super();
}
public ReduceTask(String jobFile, TaskAttemptID taskId,
int partition, int numMaps, int numSlotsRequired) {
super(jobFile, taskId, partition, numSlotsRequired);
this.numMaps = numMaps;
}
private CompressionCodec initCodec() {
// check if map-outputs are to be compressed
if (conf.getCompressMapOutput()) {
Class extends CompressionCodec> codecClass =
conf.getMapOutputCompressorClass(DefaultCodec.class);
return ReflectionUtils.newInstance(codecClass, conf);
}
return null;
}
@Override
public TaskRunner createRunner(TaskTracker tracker, TaskInProgress tip)
throws IOException {
return new ReduceTaskRunner(tip, tracker, this.conf);
}
@Override
public boolean isMapTask() {
return false;
}
public int getNumMaps() { return numMaps; }
/**
* Localize the given JobConf to be specific for this task.
*/
@Override
public void localizeConfiguration(JobConf conf) throws IOException {
super.localizeConfiguration(conf);
conf.setNumMapTasks(numMaps);
}
@Override
public void write(DataOutput out) throws IOException {
super.write(out);
out.writeInt(numMaps); // write the number of maps
}
@Override
public void readFields(DataInput in) throws IOException {
super.readFields(in);
numMaps = in.readInt();
}
// Get the input files for the reducer.
private Path[] getMapFiles(FileSystem fs, boolean isLocal)
throws IOException {
List fileList = new ArrayList();
if (isLocal) {
// for local jobs
for(int i = 0; i < numMaps; ++i) {
fileList.add(mapOutputFile.getInputFile(i));
}
} else {
// for non local jobs
for (FileStatus filestatus : mapOutputFilesOnDisk) {
fileList.add(filestatus.getPath());
}
}
return fileList.toArray(new Path[0]);
}
private class ReduceValuesIterator
extends ValuesIterator {
public ReduceValuesIterator (RawKeyValueIterator in,
RawComparator comparator,
Class keyClass,
Class valClass,
Configuration conf, Progressable reporter)
throws IOException {
super(in, comparator, keyClass, valClass, conf, reporter);
}
@Override
public VALUE next() {
reduceInputValueCounter.increment(1);
return moveToNext();
}
protected VALUE moveToNext() {
return super.next();
}
public void informReduceProgress() {
reducePhase.set(super.in.getProgress().getProgress()); // update progress
reporter.progress();
}
}
private class SkippingReduceValuesIterator
extends ReduceValuesIterator {
private SkipRangeIterator skipIt;
private TaskUmbilicalProtocol umbilical;
private Counters.Counter skipGroupCounter;
private Counters.Counter skipRecCounter;
private long grpIndex = -1;
private Class keyClass;
private Class valClass;
private SequenceFile.Writer skipWriter;
private boolean toWriteSkipRecs;
private boolean hasNext;
private TaskReporter reporter;
public SkippingReduceValuesIterator(RawKeyValueIterator in,
RawComparator comparator, Class keyClass,
Class valClass, Configuration conf, TaskReporter reporter,
TaskUmbilicalProtocol umbilical) throws IOException {
super(in, comparator, keyClass, valClass, conf, reporter);
this.umbilical = umbilical;
this.skipGroupCounter =
reporter.getCounter(TaskCounter.REDUCE_SKIPPED_GROUPS);
this.skipRecCounter =
reporter.getCounter(TaskCounter.REDUCE_SKIPPED_RECORDS);
this.toWriteSkipRecs = toWriteSkipRecs() &&
SkipBadRecords.getSkipOutputPath(conf)!=null;
this.keyClass = keyClass;
this.valClass = valClass;
this.reporter = reporter;
skipIt = getSkipRanges().skipRangeIterator();
mayBeSkip();
}
public void nextKey() throws IOException {
super.nextKey();
mayBeSkip();
}
public boolean more() {
return super.more() && hasNext;
}
private void mayBeSkip() throws IOException {
hasNext = skipIt.hasNext();
if(!hasNext) {
LOG.warn("Further groups got skipped.");
return;
}
grpIndex++;
long nextGrpIndex = skipIt.next();
long skip = 0;
long skipRec = 0;
while(grpIndex0 && skipIt.skippedAllRanges() && skipWriter!=null) {
skipWriter.close();
}
skipGroupCounter.increment(skip);
skipRecCounter.increment(skipRec);
reportNextRecordRange(umbilical, grpIndex);
}
@SuppressWarnings("unchecked")
private void writeSkippedRec(KEY key, VALUE value) throws IOException{
if(skipWriter==null) {
Path skipDir = SkipBadRecords.getSkipOutputPath(conf);
Path skipFile = new Path(skipDir, getTaskID().toString());
skipWriter = SequenceFile.createWriter(
skipFile.getFileSystem(conf), conf, skipFile,
keyClass, valClass,
CompressionType.BLOCK, reporter);
}
skipWriter.append(key, value);
}
}
@Override
@SuppressWarnings("unchecked")
public void run(JobConf job, final TaskUmbilicalProtocol umbilical)
throws IOException, InterruptedException, ClassNotFoundException {
job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
if (isMapOrReduce()) {
copyPhase = getProgress().addPhase("copy");
sortPhase = getProgress().addPhase("sort");
reducePhase = getProgress().addPhase("reduce");
}
// start thread that will handle communication with parent
TaskReporter reporter = startReporter(umbilical);
boolean useNewApi = job.getUseNewReducer();
initialize(job, getJobID(), reporter, useNewApi);
// check if it is a cleanupJobTask
if (jobCleanup) {
runJobCleanupTask(umbilical, reporter);
return;
}
if (jobSetup) {
runJobSetupTask(umbilical, reporter);
return;
}
if (taskCleanup) {
runTaskCleanupTask(umbilical, reporter);
return;
}
// Initialize the codec
codec = initCodec();
RawKeyValueIterator rIter = null;
boolean isLocal = "local".equals(job.get(JTConfig.JT_IPC_ADDRESS, "local"));
if (!isLocal) {
Class combinerClass = conf.getCombinerClass();
CombineOutputCollector combineCollector =
(null != combinerClass) ?
new CombineOutputCollector(reduceCombineOutputCounter) : null;
Shuffle shuffle =
new Shuffle(getTaskID(), job, FileSystem.getLocal(job), umbilical,
super.lDirAlloc, reporter, codec,
combinerClass, combineCollector,
spilledRecordsCounter, reduceCombineInputCounter,
shuffledMapsCounter,
reduceShuffleBytes, failedShuffleCounter,
mergedMapOutputsCounter,
taskStatus, copyPhase, sortPhase, this);
rIter = shuffle.run();
} else {
final FileSystem rfs = FileSystem.getLocal(job).getRaw();
rIter = Merger.merge(job, rfs, job.getMapOutputKeyClass(),
job.getMapOutputValueClass(), codec,
getMapFiles(rfs, true),
!conf.getKeepFailedTaskFiles(),
job.getInt(JobContext.IO_SORT_FACTOR, 100),
new Path(getTaskID().toString()),
job.getOutputKeyComparator(),
reporter, spilledRecordsCounter, null, null);
}
// free up the data structures
mapOutputFilesOnDisk.clear();
sortPhase.complete(); // sort is complete
setPhase(TaskStatus.Phase.REDUCE);
statusUpdate(umbilical);
Class keyClass = job.getMapOutputKeyClass();
Class valueClass = job.getMapOutputValueClass();
RawComparator comparator = job.getOutputValueGroupingComparator();
if (useNewApi) {
runNewReducer(job, umbilical, reporter, rIter, comparator,
keyClass, valueClass);
} else {
runOldReducer(job, umbilical, reporter, rIter, comparator,
keyClass, valueClass);
}
done(umbilical, reporter);
}
@SuppressWarnings("unchecked")
private
void runOldReducer(JobConf job,
TaskUmbilicalProtocol umbilical,
final TaskReporter reporter,
RawKeyValueIterator rIter,
RawComparator comparator,
Class keyClass,
Class valueClass) throws IOException {
Reducer reducer =
ReflectionUtils.newInstance(job.getReducerClass(), job);
// make output collector
String finalName = getOutputName(getPartition());
FileSystem fs = FileSystem.get(job);
final RecordWriter out =
job.getOutputFormat().getRecordWriter(fs, job, finalName, reporter);
OutputCollector collector =
new OutputCollector() {
public void collect(OUTKEY key, OUTVALUE value)
throws IOException {
out.write(key, value);
reduceOutputCounter.increment(1);
// indicate that progress update needs to be sent
reporter.progress();
}
};
// apply reduce function
try {
//increment processed counter only if skipping feature is enabled
boolean incrProcCount = SkipBadRecords.getReducerMaxSkipGroups(job)>0 &&
SkipBadRecords.getAutoIncrReducerProcCount(job);
ReduceValuesIterator values = isSkipping() ?
new SkippingReduceValuesIterator(rIter,
comparator, keyClass, valueClass,
job, reporter, umbilical) :
new ReduceValuesIterator(rIter,
job.getOutputValueGroupingComparator(), keyClass, valueClass,
job, reporter);
values.informReduceProgress();
while (values.more()) {
reduceInputKeyCounter.increment(1);
reducer.reduce(values.getKey(), values, collector, reporter);
if(incrProcCount) {
reporter.incrCounter(SkipBadRecords.COUNTER_GROUP,
SkipBadRecords.COUNTER_REDUCE_PROCESSED_GROUPS, 1);
}
values.nextKey();
values.informReduceProgress();
}
//Clean up: repeated in catch block below
reducer.close();
out.close(reporter);
//End of clean up.
} catch (IOException ioe) {
try {
reducer.close();
} catch (IOException ignored) {}
try {
out.close(reporter);
} catch (IOException ignored) {}
throw ioe;
}
}
static class NewTrackingRecordWriter
extends org.apache.hadoop.mapreduce.RecordWriter {
private final org.apache.hadoop.mapreduce.RecordWriter real;
private final org.apache.hadoop.mapreduce.Counter outputRecordCounter;
NewTrackingRecordWriter(org.apache.hadoop.mapreduce.RecordWriter real,
org.apache.hadoop.mapreduce.Counter recordCounter) {
this.real = real;
this.outputRecordCounter = recordCounter;
}
@Override
public void close(TaskAttemptContext context) throws IOException,
InterruptedException {
real.close(context);
}
@Override
public void write(K key, V value) throws IOException, InterruptedException {
real.write(key,value);
outputRecordCounter.increment(1);
}
}
@SuppressWarnings("unchecked")
private
void runNewReducer(JobConf job,
final TaskUmbilicalProtocol umbilical,
final TaskReporter reporter,
RawKeyValueIterator rIter,
RawComparator comparator,
Class keyClass,
Class valueClass
) throws IOException,InterruptedException,
ClassNotFoundException {
// wrap value iterator to report progress.
final RawKeyValueIterator rawIter = rIter;
rIter = new RawKeyValueIterator() {
public void close() throws IOException {
rawIter.close();
}
public DataInputBuffer getKey() throws IOException {
return rawIter.getKey();
}
public Progress getProgress() {
return rawIter.getProgress();
}
public DataInputBuffer getValue() throws IOException {
return rawIter.getValue();
}
public boolean next() throws IOException {
boolean ret = rawIter.next();
reporter.setProgress(rawIter.getProgress().getProgress());
return ret;
}
};
// make a task context so we can get the classes
org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job,
getTaskID(), reporter);
// make a reducer
org.apache.hadoop.mapreduce.Reducer reducer =
(org.apache.hadoop.mapreduce.Reducer)
ReflectionUtils.newInstance(taskContext.getReducerClass(), job);
org.apache.hadoop.mapreduce.RecordWriter output =
(org.apache.hadoop.mapreduce.RecordWriter)
outputFormat.getRecordWriter(taskContext);
org.apache.hadoop.mapreduce.RecordWriter trackedRW =
new NewTrackingRecordWriter(output, reduceOutputCounter);
job.setBoolean("mapred.skip.on", isSkipping());
job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
org.apache.hadoop.mapreduce.Reducer.Context
reducerContext = createReduceContext(reducer, job, getTaskID(),
rIter, reduceInputKeyCounter,
reduceInputValueCounter,
trackedRW,
committer,
reporter, comparator, keyClass,
valueClass);
reducer.run(reducerContext);
output.close(reducerContext);
}
}