org.apache.hadoop.tools.rumen.Histogram Maven / Gradle / Ivy
The newest version!
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
*
*/
package org.apache.hadoop.tools.rumen;
import java.io.PrintStream;
import java.util.Iterator;
import java.util.Map;
import java.util.TreeMap;
/**
* {@link Histogram} represents an ordered summary of a sequence of {@code long}
* s which can be queried to produce a discrete approximation of its cumulative
* distribution function
*
*/
class Histogram implements Iterable> {
private TreeMap content = new TreeMap();
private String name;
private long totalCount;
public Histogram() {
this("(anonymous)");
}
public Histogram(String name) {
super();
this.name = name;
totalCount = 0L;
}
public void dump(PrintStream stream) {
stream.print("dumping Histogram " + name + ":\n");
Iterator> iter = iterator();
while (iter.hasNext()) {
Map.Entry ent = iter.next();
stream.print("val/count pair: " + (long) ent.getKey() + ", "
+ (long) ent.getValue() + "\n");
}
stream.print("*** end *** \n");
}
public Iterator> iterator() {
return content.entrySet().iterator();
}
public long get(long key) {
Long result = content.get(key);
return result == null ? 0 : result;
}
public long getTotalCount() {
return totalCount;
}
public void enter(long value) {
Long existingValue = content.get(value);
if (existingValue == null) {
content.put(value, 1L);
} else {
content.put(value, existingValue + 1L);
}
++totalCount;
}
/**
* Produces a discrete approximation of the CDF. The user provides the points
* on the {@code Y} axis he wants, and we give the corresponding points on the
* {@code X} axis, plus the minimum and maximum from the data.
*
* @param scale
* the denominator applied to every element of buckets. For example,
* if {@code scale} is {@code 1000}, a {@code buckets} element of 500
* will specify the median in that output slot.
* @param buckets
* an array of int, all less than scale and each strictly greater
* than its predecessor if any. We don't check these requirements.
* @return a {@code long[]}, with two more elements than {@code buckets} has.
* The first resp. last element is the minimum resp. maximum value
* that was ever {@code enter}ed. The rest of the elements correspond
* to the elements of {@code buckets} and carry the first element
* whose rank is no less than {@code #content elements * scale /
* bucket}.
*
*/
public long[] getCDF(int scale, int[] buckets) {
if (totalCount == 0) {
return null;
}
long[] result = new long[buckets.length + 2];
// fill in the min and the max
result[0] = content.firstEntry().getKey();
result[buckets.length + 1] = content.lastEntry().getKey();
Iterator> iter = content.entrySet().iterator();
long cumulativeCount = 0;
int bucketCursor = 0;
// Loop invariant: the item at buckets[bucketCursor] can still be reached
// from iter, and the number of logged elements no longer available from
// iter is cumulativeCount.
//
// cumulativeCount/totalCount is therefore strictly less than
// buckets[bucketCursor]/scale .
while (iter.hasNext()) {
long targetCumulativeCount = buckets[bucketCursor] * totalCount / scale;
Map.Entry elt = iter.next();
cumulativeCount += elt.getValue();
while (cumulativeCount >= targetCumulativeCount) {
result[bucketCursor + 1] = elt.getKey();
++bucketCursor;
if (bucketCursor < buckets.length) {
targetCumulativeCount = buckets[bucketCursor] * totalCount / scale;
} else {
break;
}
}
if (bucketCursor == buckets.length) {
break;
}
}
return result;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy