org.apache.hadoop.tools.rumen.LoggedDiscreteCDF Maven / Gradle / Ivy
The newest version!
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.tools.rumen;
import java.util.ArrayList;
import java.util.List;
/**
* A {@link LoggedDiscreteCDF} is a discrete approximation of a cumulative
* distribution function, with this class set up to meet the requirements of the
* Jackson JSON parser/generator.
*
* All of the public methods are simply accessors for the instance variables we
* want to write out in the JSON files.
*
*/
public class LoggedDiscreteCDF implements DeepCompare {
/**
* The number of values this CDF is built on
*/
long numberValues = -1L;
/**
* The least {@code X} value
*/
long minimum = Long.MIN_VALUE;
/**
* The coordinates of the bulk of the CDF
*/
List rankings = new ArrayList();
/**
* The greatest {@code X} value
*/
long maximum = Long.MAX_VALUE;
void setCDF(Histogram data, int[] steps, int modulus) {
numberValues = data.getTotalCount();
long[] CDF = data.getCDF(modulus, steps);
if (CDF != null) {
minimum = CDF[0];
maximum = CDF[CDF.length - 1];
rankings = new ArrayList();
for (int i = 1; i < CDF.length - 1; ++i) {
LoggedSingleRelativeRanking srr = new LoggedSingleRelativeRanking();
srr.setRelativeRanking(((double) steps[i - 1]) / modulus);
srr.setDatum(CDF[i]);
rankings.add(srr);
}
}
}
public long getMinimum() {
return minimum;
}
void setMinimum(long minimum) {
this.minimum = minimum;
}
public List getRankings() {
return rankings;
}
void setRankings(List rankings) {
this.rankings = rankings;
}
public long getMaximum() {
return maximum;
}
void setMaximum(long maximum) {
this.maximum = maximum;
}
public long getNumberValues() {
return numberValues;
}
void setNumberValues(long numberValues) {
this.numberValues = numberValues;
}
private void compare1(long c1, long c2, TreePath loc, String eltname)
throws DeepInequalityException {
if (c1 != c2) {
throw new DeepInequalityException(eltname + " miscompared", new TreePath(
loc, eltname));
}
}
private void compare1(List c1,
List c2, TreePath loc, String eltname)
throws DeepInequalityException {
if (c1 == null && c2 == null) {
return;
}
if (c1 == null || c2 == null || c1.size() != c2.size()) {
throw new DeepInequalityException(eltname + " miscompared", new TreePath(
loc, eltname));
}
for (int i = 0; i < c1.size(); ++i) {
c1.get(i).deepCompare(c2.get(i), new TreePath(loc, eltname, i));
}
}
public void deepCompare(DeepCompare comparand, TreePath loc)
throws DeepInequalityException {
if (!(comparand instanceof LoggedDiscreteCDF)) {
throw new DeepInequalityException("comparand has wrong type", loc);
}
LoggedDiscreteCDF other = (LoggedDiscreteCDF) comparand;
compare1(numberValues, other.numberValues, loc, "numberValues");
compare1(minimum, other.minimum, loc, "minimum");
compare1(maximum, other.maximum, loc, "maximum");
compare1(rankings, other.rankings, loc, "rankings");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy