All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.hbase.io.ByteBuffAllocator Maven / Gradle / Ivy

There is a newer version: 3.0.0-beta-1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.hadoop.hbase.io;

import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.LongAdder;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HConstants;
import org.apache.hadoop.hbase.nio.ByteBuff;
import org.apache.hadoop.hbase.nio.SingleByteBuff;
import org.apache.hadoop.hbase.util.ReflectionUtils;
import org.apache.hadoop.hbase.util.UnsafeAccess;
import org.apache.yetus.audience.InterfaceAudience;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import org.apache.hbase.thirdparty.com.google.common.collect.Sets;

/**
 * ByteBuffAllocator is a nio ByteBuffer pool. It returns {@link ByteBuff}s which are wrappers of
 * offheap {@link ByteBuffer} usually. If we are sure that the returned ByteBuffs have reached the
 * end of their life cycle, we must call {@link ByteBuff#release()} to return buffers to the pool
 * otherwise the pool will leak. If the desired memory size is larger than what the ByteBufferPool
 * has available, we'll downgrade to allocate ByteBuffers from the heap. Increase the ByteBufferPool
 * size if detect this case.
*
* For better memory/pool utilization, there is a lower bound named * minSizeForReservoirUse in this allocator, and if the desired size is less than * minSizeForReservoirUse, the allocator will just allocate the ByteBuffer from heap * and let the JVM manage memory, because it better to not waste pool slots allocating a single * fixed-size ByteBuffer for a small object.
*
* This pool can be used anywhere it makes sense managing memory. Currently used at least by RPC. */ @InterfaceAudience.Private public class ByteBuffAllocator { private static final Logger LOG = LoggerFactory.getLogger(ByteBuffAllocator.class); // The on-heap allocator is mostly used for testing but also has some non-test usage such as // for scanning snapshot. This implementation will just allocate ByteBuffers from heap but // wrapped by ByteBuff. public static final ByteBuffAllocator HEAP = ByteBuffAllocator.createOnHeap(); public static final String ALLOCATOR_POOL_ENABLED_KEY = "hbase.server.allocator.pool.enabled"; public static final String MAX_BUFFER_COUNT_KEY = "hbase.server.allocator.max.buffer.count"; public static final String BUFFER_SIZE_KEY = "hbase.server.allocator.buffer.size"; public static final String MIN_ALLOCATE_SIZE_KEY = "hbase.server.allocator.minimal.allocate.size"; /** * Set an alternate bytebuffallocator by setting this config, e.g. we can config * {@link DeallocateRewriteByteBuffAllocator} to find out prematurely release issues */ public static final String BYTEBUFF_ALLOCATOR_CLASS = "hbase.bytebuff.allocator.class"; /** * @deprecated since 2.3.0 and will be removed in 4.0.0. Use * {@link ByteBuffAllocator#ALLOCATOR_POOL_ENABLED_KEY} instead. */ @Deprecated public static final String DEPRECATED_ALLOCATOR_POOL_ENABLED_KEY = "hbase.ipc.server.reservoir.enabled"; /** * @deprecated since 2.3.0 and will be removed in 4.0.0. Use * {@link ByteBuffAllocator#MAX_BUFFER_COUNT_KEY} instead. */ @Deprecated static final String DEPRECATED_MAX_BUFFER_COUNT_KEY = "hbase.ipc.server.reservoir.initial.max"; /** * @deprecated since 2.3.0 and will be removed in 4.0.0. Use * {@link ByteBuffAllocator#BUFFER_SIZE_KEY} instead. */ @Deprecated static final String DEPRECATED_BUFFER_SIZE_KEY = "hbase.ipc.server.reservoir.initial.buffer.size"; /** * There're some reasons why better to choose 65KB(rather than 64KB) as the default buffer size: *

* 1. Almost all of the data blocks have the block size: 64KB + delta, whose delta is very small, * depends on the size of lastKeyValue. If we set buffer.size=64KB, then each block will be * allocated as a MultiByteBuff: one 64KB DirectByteBuffer and delta bytes HeapByteBuffer, the * HeapByteBuffer will increase the GC pressure. Ideally, we should let the data block to be * allocated as a SingleByteBuff, it has simpler data structure, faster access speed, less heap * usage. *

* 2. Since the blocks are MultiByteBuff when using buffer.size=64KB, so we have to calculate the * checksum by an temp heap copying (see HBASE-21917), while if it's a SingleByteBuff, we can * speed the checksum by calling the hadoop' checksum in native lib, which is more faster. *

* For performance comparison, please see HBASE-22483. */ public static final int DEFAULT_BUFFER_SIZE = 65 * 1024; public static final Recycler NONE = () -> { }; public interface Recycler { void free(); } protected final boolean reservoirEnabled; protected final int bufSize; private final int maxBufCount; private final AtomicInteger usedBufCount = new AtomicInteger(0); private boolean maxPoolSizeInfoLevelLogged = false; // If the desired size is at least this size, it'll allocated from ByteBufferPool, otherwise it'll // allocated from heap for better utilization. We make this to be 1/6th of the pool buffer size. private final int minSizeForReservoirUse; private final Queue buffers = new ConcurrentLinkedQueue<>(); // Metrics to track the pool allocation bytes and heap allocation bytes. If heap allocation // bytes is increasing so much, then we may need to increase the max.buffer.count . private final LongAdder poolAllocationBytes = new LongAdder(); private final LongAdder heapAllocationBytes = new LongAdder(); private long lastPoolAllocationBytes = 0; private long lastHeapAllocationBytes = 0; /** * Initialize an {@link ByteBuffAllocator} which will try to allocate ByteBuffers from off-heap if * reservoir is enabled and the reservoir has enough buffers, otherwise the allocator will just * allocate the insufficient buffers from on-heap to meet the requirement. * @param conf which get the arguments to initialize the allocator. * @param reservoirEnabled indicate whether the reservoir is enabled or disabled. NOTICE: if * reservoir is enabled, then we will use the pool allocator to allocate * off-heap ByteBuffers and use the HEAP allocator to allocate heap * ByteBuffers. Otherwise if reservoir is disabled then all allocations * will happen in HEAP instance. * @return ByteBuffAllocator to manage the byte buffers. */ public static ByteBuffAllocator create(Configuration conf, boolean reservoirEnabled) { int poolBufSize = conf.getInt(BUFFER_SIZE_KEY, DEFAULT_BUFFER_SIZE); if (reservoirEnabled) { // The max number of buffers to be pooled in the ByteBufferPool. The default value been // selected based on the #handlers configured. When it is read request, 2 MB is the max size // at which we will send back one RPC request. Means max we need 2 MB for creating the // response cell block. (Well it might be much lesser than this because in 2 MB size calc, we // include the heap size overhead of each cells also.) Considering 2 MB, we will need // (2 * 1024 * 1024) / poolBufSize buffers to make the response cell block. Pool buffer size // is by default 64 KB. // In case of read request, at the end of the handler process, we will make the response // cellblock and add the Call to connection's response Q and a single Responder thread takes // connections and responses from that one by one and do the socket write. So there is chances // that by the time a handler originated response is actually done writing to socket and so // released the BBs it used, the handler might have processed one more read req. On an avg 2x // we consider and consider that also for the max buffers to pool int bufsForTwoMB = (2 * 1024 * 1024) / poolBufSize; int maxBuffCount = conf.getInt(MAX_BUFFER_COUNT_KEY, conf.getInt(HConstants.REGION_SERVER_HANDLER_COUNT, HConstants.DEFAULT_REGION_SERVER_HANDLER_COUNT) * bufsForTwoMB * 2); int minSizeForReservoirUse = conf.getInt(MIN_ALLOCATE_SIZE_KEY, poolBufSize / 6); Class clazz = conf.getClass(BYTEBUFF_ALLOCATOR_CLASS, ByteBuffAllocator.class); return (ByteBuffAllocator) ReflectionUtils.newInstance(clazz, true, maxBuffCount, poolBufSize, minSizeForReservoirUse); } else { return HEAP; } } /** * Initialize an {@link ByteBuffAllocator} which only allocate ByteBuffer from on-heap, it's * designed for testing purpose or disabled reservoir case. * @return allocator to allocate on-heap ByteBuffer. */ private static ByteBuffAllocator createOnHeap() { return new ByteBuffAllocator(false, 0, DEFAULT_BUFFER_SIZE, Integer.MAX_VALUE); } protected ByteBuffAllocator(boolean reservoirEnabled, int maxBufCount, int bufSize, int minSizeForReservoirUse) { this.reservoirEnabled = reservoirEnabled; this.maxBufCount = maxBufCount; this.bufSize = bufSize; this.minSizeForReservoirUse = minSizeForReservoirUse; } public boolean isReservoirEnabled() { return reservoirEnabled; } public long getHeapAllocationBytes() { return heapAllocationBytes.sum(); } public long getPoolAllocationBytes() { return poolAllocationBytes.sum(); } public int getBufferSize() { return this.bufSize; } public int getUsedBufferCount() { return this.usedBufCount.intValue(); } /** * The {@link ConcurrentLinkedQueue#size()} is O(N) complexity and time-consuming, so DO NOT use * the method except in UT. */ public int getFreeBufferCount() { return this.buffers.size(); } public int getTotalBufferCount() { return maxBufCount; } public static long getHeapAllocationBytes(ByteBuffAllocator... allocators) { long heapAllocBytes = 0; for (ByteBuffAllocator alloc : Sets.newHashSet(allocators)) { heapAllocBytes += alloc.getHeapAllocationBytes(); } return heapAllocBytes; } public static double getHeapAllocationRatio(ByteBuffAllocator... allocators) { double heapDelta = 0.0, poolDelta = 0.0; long heapAllocBytes, poolAllocBytes; // If disabled the pool allocator, then we use the global HEAP allocator. otherwise we use // the pool allocator to allocate offheap ByteBuffers and use the HEAP to allocate heap // ByteBuffers. So here we use a HashSet to remove the duplicated allocator object in disable // case. for (ByteBuffAllocator alloc : Sets.newHashSet(allocators)) { heapAllocBytes = alloc.heapAllocationBytes.sum(); poolAllocBytes = alloc.poolAllocationBytes.sum(); heapDelta += (heapAllocBytes - alloc.lastHeapAllocationBytes); poolDelta += (poolAllocBytes - alloc.lastPoolAllocationBytes); alloc.lastHeapAllocationBytes = heapAllocBytes; alloc.lastPoolAllocationBytes = poolAllocBytes; } // Calculate the heap allocation ratio. if (Math.abs(heapDelta + poolDelta) < 1e-3) { return 0.0; } return heapDelta / (heapDelta + poolDelta); } /** * Allocate an buffer with buffer size from ByteBuffAllocator, Note to call the * {@link ByteBuff#release()} if no need any more, otherwise the memory leak happen in NIO * ByteBuffer pool. * @return an ByteBuff with the buffer size. */ public SingleByteBuff allocateOneBuffer() { if (isReservoirEnabled()) { ByteBuffer bb = getBuffer(); if (bb != null) { return new SingleByteBuff(() -> putbackBuffer(bb), bb); } } // Allocated from heap, let the JVM free its memory. return (SingleByteBuff) ByteBuff.wrap(allocateOnHeap(bufSize)); } private ByteBuffer allocateOnHeap(int size) { heapAllocationBytes.add(size); return ByteBuffer.allocate(size); } /** * Allocate size bytes from the ByteBufAllocator, Note to call the {@link ByteBuff#release()} if * no need any more, otherwise the memory leak happen in NIO ByteBuffer pool. * @param size to allocate * @return an ByteBuff with the desired size. */ public ByteBuff allocate(int size) { if (size < 0) { throw new IllegalArgumentException("size to allocate should >=0"); } // If disabled the reservoir, just allocate it from on-heap. if (!isReservoirEnabled() || size == 0) { return ByteBuff.wrap(allocateOnHeap(size)); } int reminder = size % bufSize; int len = size / bufSize + (reminder > 0 ? 1 : 0); List bbs = new ArrayList<>(len); // Allocate from ByteBufferPool until the remaining is less than minSizeForReservoirUse or // reservoir is exhausted. int remain = size; while (remain >= minSizeForReservoirUse) { ByteBuffer bb = this.getBuffer(); if (bb == null) { break; } bbs.add(bb); remain -= bufSize; } int lenFromReservoir = bbs.size(); if (remain > 0) { // If the last ByteBuffer is too small or the reservoir can not provide more ByteBuffers, we // just allocate the ByteBuffer from on-heap. bbs.add(allocateOnHeap(remain)); } ByteBuff bb; // we only need a recycler if we successfully pulled from the pool // this matters for determining whether to add leak detection in RefCnt if (lenFromReservoir == 0) { bb = ByteBuff.wrap(bbs); } else { bb = ByteBuff.wrap(bbs, () -> { for (int i = 0; i < lenFromReservoir; i++) { this.putbackBuffer(bbs.get(i)); } }); } bb.limit(size); return bb; } /** * Free all direct buffers if allocated, mainly used for testing. */ public void clean() { while (!buffers.isEmpty()) { ByteBuffer b = buffers.poll(); if (b.isDirect()) { UnsafeAccess.freeDirectBuffer(b); } } this.usedBufCount.set(0); this.maxPoolSizeInfoLevelLogged = false; this.poolAllocationBytes.reset(); this.heapAllocationBytes.reset(); this.lastPoolAllocationBytes = 0; this.lastHeapAllocationBytes = 0; } /** * @return One free DirectByteBuffer from the pool. If no free ByteBuffer and we have not reached * the maximum pool size, it will create a new one and return. In case of max pool size * also reached, will return null. When pool returned a ByteBuffer, make sure to return it * back to pool after use. */ private ByteBuffer getBuffer() { ByteBuffer bb = buffers.poll(); if (bb != null) { // To reset the limit to capacity and position to 0, must clear here. bb.clear(); poolAllocationBytes.add(bufSize); return bb; } while (true) { int c = this.usedBufCount.intValue(); if (c >= this.maxBufCount) { if (!maxPoolSizeInfoLevelLogged) { LOG.info("Pool already reached its max capacity : {} and no free buffers now. Consider " + "increasing the value for '{}' ?", maxBufCount, MAX_BUFFER_COUNT_KEY); maxPoolSizeInfoLevelLogged = true; } return null; } if (!this.usedBufCount.compareAndSet(c, c + 1)) { continue; } poolAllocationBytes.add(bufSize); return ByteBuffer.allocateDirect(bufSize); } } /** * Return back a ByteBuffer after its use. Don't read/write the ByteBuffer after the returning. * @param buf ByteBuffer to return. */ protected void putbackBuffer(ByteBuffer buf) { if (buf.capacity() != bufSize || (reservoirEnabled ^ buf.isDirect())) { LOG.warn("Trying to put a buffer, not created by this pool! Will be just ignored"); return; } buffers.offer(buf); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy