org.apache.hadoop.hbase.mapreduce.TableInputFormatBase Maven / Gradle / Ivy
Show all versions of hbase-server Show documentation
/**
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.mapreduce;
import java.io.IOException;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.UnknownHostException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import javax.naming.NamingException;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.classification.InterfaceAudience;
import org.apache.hadoop.hbase.classification.InterfaceStability;
import org.apache.hadoop.hbase.HConstants;
import org.apache.hadoop.hbase.HRegionLocation;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.util.Addressing;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.hbase.util.Pair;
import org.apache.hadoop.hbase.util.RegionSizeCalculator;
import org.apache.hadoop.hbase.util.Strings;
import org.apache.hadoop.mapreduce.InputFormat;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.net.DNS;
import org.apache.hadoop.util.StringUtils;
/**
* A base for {@link TableInputFormat}s. Receives a {@link HTable}, an
* {@link Scan} instance that defines the input columns etc. Subclasses may use
* other TableRecordReader implementations.
*
* An example of a subclass:
*
* public static class ExampleTIF extends TableInputFormatBase implements JobConfigurable {
*
* @Override
* public void configure(JobConf job) {
* try {
* HTable exampleTable = new HTable(HBaseConfiguration.create(job),
* Bytes.toBytes("exampleTable"));
* // mandatory
* setHTable(exampleTable);
* byte[][] inputColumns = new byte [][] { Bytes.toBytes("columnA"),
* Bytes.toBytes("columnB") };
* // optional
* Scan scan = new Scan();
* for (byte[] family : inputColumns) {
* scan.addFamily(family);
* }
* Filter exampleFilter = new RowFilter(CompareOp.EQUAL, new RegexStringComparator("aa.*"));
* scan.setFilter(exampleFilter);
* setScan(scan);
* } catch (IOException exception) {
* throw new RuntimeException("Failed to configure for job.", exception);
* }
* }
* }
*
*/
@InterfaceAudience.Public
@InterfaceStability.Stable
public abstract class TableInputFormatBase
extends InputFormat {
/** Specify if we enable auto-balance for input in M/R jobs.*/
public static final String MAPREDUCE_INPUT_AUTOBALANCE = "hbase.mapreduce.input.autobalance";
/** Specify if ratio for data skew in M/R jobs, it goes well with the enabling hbase.mapreduce
* .input.autobalance property.*/
public static final String INPUT_AUTOBALANCE_MAXSKEWRATIO = "hbase.mapreduce.input.autobalance" +
".maxskewratio";
/** Specify if the row key in table is text (ASCII between 32~126),
* default is true. False means the table is using binary row key*/
public static final String TABLE_ROW_TEXTKEY = "hbase.table.row.textkey";
final Log LOG = LogFactory.getLog(TableInputFormatBase.class);
/** Holds the details for the internal scanner. */
private Scan scan = null;
/** The table to scan. */
private HTable table = null;
/** The reader scanning the table, can be a custom one. */
private TableRecordReader tableRecordReader = null;
/** The reverse DNS lookup cache mapping: IPAddress => HostName */
private HashMap reverseDNSCacheMap =
new HashMap();
/** The NameServer address */
private String nameServer = null;
/**
* Builds a TableRecordReader. If no TableRecordReader was provided, uses
* the default.
*
* @param split The split to work with.
* @param context The current context.
* @return The newly created record reader.
* @throws IOException When creating the reader fails.
* @see org.apache.hadoop.mapreduce.InputFormat#createRecordReader(
* org.apache.hadoop.mapreduce.InputSplit,
* org.apache.hadoop.mapreduce.TaskAttemptContext)
*/
@Override
public RecordReader createRecordReader(
InputSplit split, TaskAttemptContext context)
throws IOException {
if (table == null) {
throw new IOException("Cannot create a record reader because of a" +
" previous error. Please look at the previous logs lines from" +
" the task's full log for more details.");
}
TableSplit tSplit = (TableSplit) split;
LOG.info("Input split length: " + StringUtils.humanReadableInt(tSplit.getLength()) + " bytes.");
TableRecordReader trr = this.tableRecordReader;
// if no table record reader was provided use default
if (trr == null) {
trr = new TableRecordReader();
}
Scan sc = new Scan(this.scan);
sc.setStartRow(tSplit.getStartRow());
sc.setStopRow(tSplit.getEndRow());
trr.setScan(sc);
trr.setHTable(table);
return trr;
}
protected Pair getStartEndKeys() throws IOException {
return table.getStartEndKeys();
}
/**
* Calculates the splits that will serve as input for the map tasks. The
* number of splits matches the number of regions in a table.
*
* @param context The current job context.
* @return The list of input splits.
* @throws IOException When creating the list of splits fails.
* @see org.apache.hadoop.mapreduce.InputFormat#getSplits(
* org.apache.hadoop.mapreduce.JobContext)
*/
@Override
public List getSplits(JobContext context) throws IOException {
if (table == null) {
throw new IOException("No table was provided.");
}
// Get the name server address and the default value is null.
this.nameServer =
context.getConfiguration().get("hbase.nameserver.address", null);
RegionSizeCalculator sizeCalculator = new RegionSizeCalculator(table);
Pair keys = getStartEndKeys();
if (keys == null || keys.getFirst() == null ||
keys.getFirst().length == 0) {
HRegionLocation regLoc = table.getRegionLocation(HConstants.EMPTY_BYTE_ARRAY, false);
if (null == regLoc) {
throw new IOException("Expecting at least one region.");
}
List splits = new ArrayList(1);
long regionSize = sizeCalculator.getRegionSize(regLoc.getRegionInfo().getRegionName());
TableSplit split = new TableSplit(table.getName(),
HConstants.EMPTY_BYTE_ARRAY, HConstants.EMPTY_BYTE_ARRAY, regLoc
.getHostnamePort().split(Addressing.HOSTNAME_PORT_SEPARATOR)[0], regionSize);
splits.add(split);
return splits;
}
List splits = new ArrayList(keys.getFirst().length);
for (int i = 0; i < keys.getFirst().length; i++) {
if ( !includeRegionInSplit(keys.getFirst()[i], keys.getSecond()[i])) {
continue;
}
HRegionLocation location = table.getRegionLocation(keys.getFirst()[i], false);
// The below InetSocketAddress creation does a name resolution.
InetSocketAddress isa = new InetSocketAddress(location.getHostname(), location.getPort());
if (isa.isUnresolved()) {
LOG.warn("Failed resolve " + isa);
}
InetAddress regionAddress = isa.getAddress();
String regionLocation;
try {
regionLocation = reverseDNS(regionAddress);
} catch (NamingException e) {
LOG.warn("Cannot resolve the host name for " + regionAddress + " because of " + e);
regionLocation = location.getHostname();
}
byte[] startRow = scan.getStartRow();
byte[] stopRow = scan.getStopRow();
// determine if the given start an stop key fall into the region
if ((startRow.length == 0 || keys.getSecond()[i].length == 0 ||
Bytes.compareTo(startRow, keys.getSecond()[i]) < 0) &&
(stopRow.length == 0 ||
Bytes.compareTo(stopRow, keys.getFirst()[i]) > 0)) {
byte[] splitStart = startRow.length == 0 ||
Bytes.compareTo(keys.getFirst()[i], startRow) >= 0 ?
keys.getFirst()[i] : startRow;
byte[] splitStop = (stopRow.length == 0 ||
Bytes.compareTo(keys.getSecond()[i], stopRow) <= 0) &&
keys.getSecond()[i].length > 0 ?
keys.getSecond()[i] : stopRow;
byte[] regionName = location.getRegionInfo().getRegionName();
long regionSize = sizeCalculator.getRegionSize(regionName);
TableSplit split = new TableSplit(table.getName(),
splitStart, splitStop, regionLocation, regionSize);
splits.add(split);
if (LOG.isDebugEnabled()) {
LOG.debug("getSplits: split -> " + i + " -> " + split);
}
}
}
//The default value of "hbase.mapreduce.input.autobalance" is false, which means not enabled.
boolean enableAutoBalance = context.getConfiguration().getBoolean(
MAPREDUCE_INPUT_AUTOBALANCE, false);
if (enableAutoBalance) {
long totalRegionSize=0;
for (int i = 0; i < splits.size(); i++){
TableSplit ts = (TableSplit)splits.get(i);
totalRegionSize += ts.getLength();
}
long averageRegionSize = totalRegionSize / splits.size();
// the averageRegionSize must be positive.
if (averageRegionSize <= 0) {
LOG.warn("The averageRegionSize is not positive: "+ averageRegionSize + ", " +
"set it to 1.");
averageRegionSize = 1;
}
return calculateRebalancedSplits(splits, context, averageRegionSize);
} else {
return splits;
}
}
public String reverseDNS(InetAddress ipAddress) throws NamingException, UnknownHostException {
String hostName = this.reverseDNSCacheMap.get(ipAddress);
if (hostName == null) {
String ipAddressString = null;
try {
ipAddressString = DNS.reverseDns(ipAddress, null);
} catch (Exception e) {
// We can use InetAddress in case the jndi failed to pull up the reverse DNS entry from the
// name service. Also, in case of ipv6, we need to use the InetAddress since resolving
// reverse DNS using jndi doesn't work well with ipv6 addresses.
ipAddressString = InetAddress.getByName(ipAddress.getHostAddress()).getHostName();
}
if (ipAddressString == null) throw new UnknownHostException("No host found for " + ipAddress);
hostName = Strings.domainNamePointerToHostName(ipAddressString);
this.reverseDNSCacheMap.put(ipAddress, hostName);
}
return hostName;
}
/**
* Calculates the number of MapReduce input splits for the map tasks. The number of
* MapReduce input splits depends on the average region size and the "data skew ratio" user set in
* configuration.
*
* @param list The list of input splits before balance.
* @param context The current job context.
* @param average The average size of all regions .
* @return The list of input splits.
* @throws IOException When creating the list of splits fails.
* @see org.apache.hadoop.mapreduce.InputFormat#getSplits(
* org.apache.hadoop.mapreduce.JobContext)
*/
public List calculateRebalancedSplits(List list, JobContext context,
long average) throws IOException {
List resultList = new ArrayList();
Configuration conf = context.getConfiguration();
//The default data skew ratio is 3
long dataSkewRatio = conf.getLong(INPUT_AUTOBALANCE_MAXSKEWRATIO, 3);
//It determines which mode to use: text key mode or binary key mode. The default is text mode.
boolean isTextKey = context.getConfiguration().getBoolean(TABLE_ROW_TEXTKEY, true);
long dataSkewThreshold = dataSkewRatio * average;
int count = 0;
while (count < list.size()) {
TableSplit ts = (TableSplit)list.get(count);
String regionLocation = ts.getRegionLocation();
long regionSize = ts.getLength();
if (regionSize >= dataSkewThreshold) {
// if the current region size is large than the data skew threshold,
// split the region into two MapReduce input splits.
byte[] splitKey = getSplitKey(ts.getStartRow(), ts.getEndRow(), isTextKey);
//Set the size of child TableSplit as 1/2 of the region size. The exact size of the
// MapReduce input splits is not far off.
TableSplit t1 = new TableSplit(table.getName(), ts.getStartRow(), splitKey, regionLocation,
regionSize / 2);
TableSplit t2 = new TableSplit(table.getName(), splitKey, ts.getEndRow(), regionLocation,
regionSize - regionSize / 2);
resultList.add(t1);
resultList.add(t2);
count++;
} else if (regionSize >= average) {
// if the region size between average size and data skew threshold size,
// make this region as one MapReduce input split.
resultList.add(ts);
count++;
} else {
// if the total size of several small continuous regions less than the average region size,
// combine them into one MapReduce input split.
long totalSize = regionSize;
byte[] splitStartKey = ts.getStartRow();
byte[] splitEndKey = ts.getEndRow();
count++;
for (; count < list.size(); count++) {
TableSplit nextRegion = (TableSplit)list.get(count);
long nextRegionSize = nextRegion.getLength();
if (totalSize + nextRegionSize <= dataSkewThreshold) {
totalSize = totalSize + nextRegionSize;
splitEndKey = nextRegion.getEndRow();
} else {
break;
}
}
TableSplit t = new TableSplit(table.getName(), splitStartKey, splitEndKey,
regionLocation, totalSize);
resultList.add(t);
}
}
return resultList;
}
/**
* select a split point in the region. The selection of the split point is based on an uniform
* distribution assumption for the keys in a region.
* Here are some examples:
* startKey: aaabcdefg endKey: aaafff split point: aaad
* startKey: 111000 endKey: 1125790 split point: 111b
* startKey: 1110 endKey: 1120 split point: 111_
* startKey: binary key { 13, -19, 126, 127 }, endKey: binary key { 13, -19, 127, 0 },
* split point: binary key { 13, -19, 127, -64 }
* Set this function as "public static", make it easier for test.
*
* @param start Start key of the region
* @param end End key of the region
* @param isText It determines to use text key mode or binary key mode
* @return The split point in the region.
*/
public static byte[] getSplitKey(byte[] start, byte[] end, boolean isText) {
byte upperLimitByte;
byte lowerLimitByte;
//Use text mode or binary mode.
if (isText) {
//The range of text char set in ASCII is [32,126], the lower limit is space and the upper
// limit is '~'.
upperLimitByte = '~';
lowerLimitByte = ' ';
} else {
upperLimitByte = Byte.MAX_VALUE;
lowerLimitByte = Byte.MIN_VALUE;
}
// For special case
// Example 1 : startkey=null, endkey="hhhqqqwww", splitKey="h"
// Example 2 (text key mode): startKey="ffffaaa", endKey=null, splitkey="f~~~~~~"
if (start.length == 0 && end.length == 0){
return new byte[]{(byte) ((lowerLimitByte + upperLimitByte) / 2)};
}
if (start.length == 0 && end.length != 0){
return new byte[]{ end[0] };
}
if (start.length != 0 && end.length == 0){
byte[] result =new byte[start.length];
result[0]=start[0];
for (int k = 1; k < start.length; k++){
result[k] = upperLimitByte;
}
return result;
}
// A list to store bytes in split key
List resultBytesList = new ArrayList();
int maxLength = start.length > end.length ? start.length : end.length;
for (int i = 0; i < maxLength; i++) {
//calculate the midpoint byte between the first difference
//for example: "11ae" and "11chw", the midpoint is "11b"
//another example: "11ae" and "11bhw", the first different byte is 'a' and 'b',
// there is no midpoint between 'a' and 'b', so we need to check the next byte.
if (start[i] == end[i]) {
resultBytesList.add(start[i]);
//For special case like: startKey="aaa", endKey="aaaz", splitKey="aaaM"
if (i + 1 == start.length) {
resultBytesList.add((byte) ((lowerLimitByte + end[i + 1]) / 2));
break;
}
} else {
//if the two bytes differ by 1, like ['a','b'], We need to check the next byte to find
// the midpoint.
if ((int)end[i] - (int)start[i] == 1) {
//get next byte after the first difference
byte startNextByte = (i + 1 < start.length) ? start[i + 1] : lowerLimitByte;
byte endNextByte = (i + 1 < end.length) ? end[i + 1] : lowerLimitByte;
int byteRange = (upperLimitByte - startNextByte) + (endNextByte - lowerLimitByte) + 1;
int halfRange = byteRange / 2;
if ((int)startNextByte + halfRange > (int)upperLimitByte) {
resultBytesList.add(end[i]);
resultBytesList.add((byte) (startNextByte + halfRange - upperLimitByte +
lowerLimitByte));
} else {
resultBytesList.add(start[i]);
resultBytesList.add((byte) (startNextByte + halfRange));
}
} else {
//calculate the midpoint key by the fist different byte (normal case),
// like "11ae" and "11chw", the midpoint is "11b"
resultBytesList.add((byte) ((start[i] + end[i]) / 2));
}
break;
}
}
//transform the List of bytes to byte[]
byte result[] = new byte[resultBytesList.size()];
for (int k = 0; k < resultBytesList.size(); k++) {
result[k] = (byte) resultBytesList.get(k);
}
return result;
}
/**
*
*
* Test if the given region is to be included in the InputSplit while splitting
* the regions of a table.
*
* This optimization is effective when there is a specific reasoning to exclude an entire region from the M-R job,
* (and hence, not contributing to the InputSplit), given the start and end keys of the same.
* Useful when we need to remember the last-processed top record and revisit the [last, current) interval for M-R processing,
* continuously. In addition to reducing InputSplits, reduces the load on the region server as
* well, due to the ordering of the keys.
*
*
* Note: It is possible that endKey.length() == 0
, for the last (recent) region.
*
* Override this method, if you want to bulk exclude regions altogether from M-R.
* By default, no region is excluded( i.e. all regions are included).
*
*
* @param startKey Start key of the region
* @param endKey End key of the region
* @return true, if this region needs to be included as part of the input (default).
*
*/
protected boolean includeRegionInSplit(final byte[] startKey, final byte [] endKey) {
return true;
}
/**
* Allows subclasses to get the {@link HTable}.
*/
protected HTable getHTable() {
return this.table;
}
/**
* Allows subclasses to set the {@link HTable}.
*
* @param table The table to get the data from.
*/
protected void setHTable(HTable table) {
this.table = table;
}
/**
* Gets the scan defining the actual details like columns etc.
*
* @return The internal scan instance.
*/
public Scan getScan() {
if (this.scan == null) this.scan = new Scan();
return scan;
}
/**
* Sets the scan defining the actual details like columns etc.
*
* @param scan The scan to set.
*/
public void setScan(Scan scan) {
this.scan = scan;
}
/**
* Allows subclasses to set the {@link TableRecordReader}.
*
* @param tableRecordReader A different {@link TableRecordReader}
* implementation.
*/
protected void setTableRecordReader(TableRecordReader tableRecordReader) {
this.tableRecordReader = tableRecordReader;
}
}