All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.hbase.master.balancer.StochasticLoadBalancer Maven / Gradle / Ivy

There is a newer version: 3.0.0-beta-1
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.hadoop.hbase.master.balancer;

import java.util.ArrayDeque;
import java.util.Collection;
import java.util.Deque;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Random;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.commons.math.stat.descriptive.DescriptiveStatistics;
import org.apache.hadoop.hbase.classification.InterfaceAudience;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.ClusterStatus;
import org.apache.hadoop.hbase.HBaseInterfaceAudience;
import org.apache.hadoop.hbase.HRegionInfo;
import org.apache.hadoop.hbase.RegionLoad;
import org.apache.hadoop.hbase.ServerLoad;
import org.apache.hadoop.hbase.ServerName;
import org.apache.hadoop.hbase.master.MasterServices;
import org.apache.hadoop.hbase.master.RegionPlan;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.hbase.util.EnvironmentEdgeManager;
import org.apache.hadoop.hbase.util.Pair;

/**
 * 

This is a best effort load balancer. Given a Cost function F(C) => x It will * randomly try and mutate the cluster to Cprime. If F(Cprime) < F(C) then the * new cluster state becomes the plan. It includes costs functions to compute the cost of:

*
    *
  • Region Load
  • *
  • Table Load
  • *
  • Data Locality
  • *
  • Memstore Sizes
  • *
  • Storefile Sizes
  • *
* * *

Every cost function returns a number between 0 and 1 inclusive; where 0 is the lowest cost * best solution, and 1 is the highest possible cost and the worst solution. The computed costs are * scaled by their respective multipliers:

* *
    *
  • hbase.master.balancer.stochastic.regionLoadCost
  • *
  • hbase.master.balancer.stochastic.moveCost
  • *
  • hbase.master.balancer.stochastic.tableLoadCost
  • *
  • hbase.master.balancer.stochastic.localityCost
  • *
  • hbase.master.balancer.stochastic.memstoreSizeCost
  • *
  • hbase.master.balancer.stochastic.storefileSizeCost
  • *
* *

In addition to the above configurations, the balancer can be tuned by the following * configuration values:

*
    *
  • hbase.master.balancer.stochastic.maxMoveRegions which * controls what the max number of regions that can be moved in a single invocation of this * balancer.
  • *
  • hbase.master.balancer.stochastic.stepsPerRegion is the coefficient by which the number of * regions is multiplied to try and get the number of times the balancer will * mutate all servers.
  • *
  • hbase.master.balancer.stochastic.maxSteps which controls the maximum number of times that * the balancer will try and mutate all the servers. The balancer will use the minimum of this * value and the above computation.
  • *
* *

This balancer is best used with hbase.master.loadbalance.bytable set to false * so that the balancer gets the full picture of all loads on the cluster.

*/ @InterfaceAudience.LimitedPrivate(HBaseInterfaceAudience.CONFIG) public class StochasticLoadBalancer extends BaseLoadBalancer { private static final String STEPS_PER_REGION_KEY = "hbase.master.balancer.stochastic.stepsPerRegion"; private static final String MAX_STEPS_KEY = "hbase.master.balancer.stochastic.maxSteps"; private static final String MAX_RUNNING_TIME_KEY = "hbase.master.balancer.stochastic.maxRunningTime"; private static final String KEEP_REGION_LOADS = "hbase.master.balancer.stochastic.numRegionLoadsToRemember"; private static final Random RANDOM = new Random(System.currentTimeMillis()); private static final Log LOG = LogFactory.getLog(StochasticLoadBalancer.class); private final RegionLocationFinder regionFinder = new RegionLocationFinder(); private ClusterStatus clusterStatus = null; Map> loads = new HashMap>(); // values are defaults private int maxSteps = 1000000; private int stepsPerRegion = 800; private long maxRunningTime = 30 * 1000 * 1; // 30 seconds. private int numRegionLoadsToRemember = 15; private RegionPicker[] pickers; private CostFromRegionLoadFunction[] regionLoadFunctions; private CostFunction[] costFunctions; // Keep locality based picker and cost function to alert them // when new services are offered private LocalityBasedPicker localityPicker; private LocalityCostFunction localityCost; @Override public void setConf(Configuration conf) { super.setConf(conf); regionFinder.setConf(conf); maxSteps = conf.getInt(MAX_STEPS_KEY, maxSteps); stepsPerRegion = conf.getInt(STEPS_PER_REGION_KEY, stepsPerRegion); maxRunningTime = conf.getLong(MAX_RUNNING_TIME_KEY, maxRunningTime); numRegionLoadsToRemember = conf.getInt(KEEP_REGION_LOADS, numRegionLoadsToRemember); localityPicker = new LocalityBasedPicker(services); localityCost = new LocalityCostFunction(conf, services); pickers = new RegionPicker[] { new RandomRegionPicker(), new LoadPicker(), localityPicker }; regionLoadFunctions = new CostFromRegionLoadFunction[] { new ReadRequestCostFunction(conf), new WriteRequestCostFunction(conf), new MemstoreSizeCostFunction(conf), new StoreFileCostFunction(conf) }; costFunctions = new CostFunction[]{ new RegionCountSkewCostFunction(conf), new MoveCostFunction(conf), localityCost, new TableSkewCostFunction(conf), regionLoadFunctions[0], regionLoadFunctions[1], regionLoadFunctions[2], regionLoadFunctions[3], }; } @Override protected void setSlop(Configuration conf) { this.slop = conf.getFloat("hbase.regions.slop", 0.001F); } @Override public void setClusterStatus(ClusterStatus st) { super.setClusterStatus(st); regionFinder.setClusterStatus(st); this.clusterStatus = st; updateRegionLoad(); for(CostFromRegionLoadFunction cost : regionLoadFunctions) { cost.setClusterStatus(st); } } @Override public void setMasterServices(MasterServices masterServices) { super.setMasterServices(masterServices); this.regionFinder.setServices(masterServices); this.localityCost.setServices(masterServices); this.localityPicker.setServices(masterServices); } /** * Given the cluster state this will try and approach an optimal balance. This * should always approach the optimal state given enough steps. */ @Override public List balanceCluster(Map> clusterState) { if (!needsBalance(new ClusterLoadState(clusterState))) { return null; } long startTime = EnvironmentEdgeManager.currentTimeMillis(); // On clusters with lots of HFileLinks or lots of reference files, // instantiating the storefile infos can be quite expensive. // Allow turning this feature off if the locality cost is not going to // be used in any computations. RegionLocationFinder finder = null; if (this.localityCost != null && this.localityCost.getMultiplier() > 0) { finder = this.regionFinder; } // Keep track of servers to iterate through them. Cluster cluster = new Cluster(clusterState, loads, finder); double currentCost = computeCost(cluster, Double.MAX_VALUE); double initCost = currentCost; double newCost = currentCost; long computedMaxSteps = Math.min(this.maxSteps, ((long)cluster.numRegions * (long)this.stepsPerRegion * (long)cluster.numServers)); // Perform a stochastic walk to see if we can get a good fit. long step; for (step = 0; step < computedMaxSteps; step++) { int pickerIdx = RANDOM.nextInt(pickers.length); RegionPicker p = pickers[pickerIdx]; Pair, Pair> picks = p.pick(cluster); int leftServer = picks.getFirst().getFirst(); int leftRegion = picks.getFirst().getSecond(); int rightServer = picks.getSecond().getFirst(); int rightRegion = picks.getSecond().getSecond(); // We couldn't find a server if (rightServer < 0 || leftServer < 0) { continue; } // We randomly picked to do nothing. if (leftRegion < 0 && rightRegion < 0) { continue; } cluster.moveOrSwapRegion(leftServer, rightServer, leftRegion, rightRegion); newCost = computeCost(cluster, currentCost); // Should this be kept? if (newCost < currentCost) { currentCost = newCost; } else { // Put things back the way they were before. // TODO: undo by remembering old values, using an UndoAction class cluster.moveOrSwapRegion(leftServer, rightServer, rightRegion, leftRegion); } if (EnvironmentEdgeManager.currentTimeMillis() - startTime > maxRunningTime) { break; } } long endTime = EnvironmentEdgeManager.currentTimeMillis(); metricsBalancer.balanceCluster(endTime - startTime); if (initCost > currentCost) { List plans = createRegionPlans(cluster); if (LOG.isDebugEnabled()) { LOG.debug("Finished computing new load balance plan. Computation took " + (endTime - startTime) + "ms to try " + step + " different iterations. Found a solution that moves " + plans.size() + " regions; Going from a computed cost of " + initCost + " to a new cost of " + currentCost); } return plans; } if (LOG.isDebugEnabled()) { LOG.debug("Could not find a better load balance plan. Tried " + step + " different configurations in " + (endTime - startTime) + "ms, and did not find anything with a computed cost less than " + initCost); } return null; } /** * Create all of the RegionPlan's needed to move from the initial cluster state to the desired * state. * * @param cluster The state of the cluster * @return List of RegionPlan's that represent the moves needed to get to desired final state. */ private List createRegionPlans(Cluster cluster) { List plans = new LinkedList(); for (int regionIndex = 0; regionIndex < cluster.regionIndexToServerIndex.length; regionIndex++) { int initialServerIndex = cluster.initialRegionIndexToServerIndex[regionIndex]; int newServerIndex = cluster.regionIndexToServerIndex[regionIndex]; if (initialServerIndex != newServerIndex) { HRegionInfo region = cluster.regions[regionIndex]; ServerName initialServer = cluster.servers[initialServerIndex]; ServerName newServer = cluster.servers[newServerIndex]; if (LOG.isTraceEnabled()) { LOG.trace("Moving Region " + region.getEncodedName() + " from server " + initialServer.getHostname() + " to " + newServer.getHostname()); } RegionPlan rp = new RegionPlan(region, initialServer, newServer); plans.add(rp); } } return plans; } /** * Store the current region loads. */ private synchronized void updateRegionLoad() { // We create a new hashmap so that regions that are no longer there are removed. // However we temporarily need the old loads so we can use them to keep the rolling average. Map> oldLoads = loads; loads = new HashMap>(); for (ServerName sn : clusterStatus.getServers()) { ServerLoad sl = clusterStatus.getLoad(sn); if (sl == null) { continue; } for (Entry entry : sl.getRegionsLoad().entrySet()) { Deque rLoads = oldLoads.get(Bytes.toString(entry.getKey())); if (rLoads == null) { // There was nothing there rLoads = new ArrayDeque(); } else if (rLoads.size() >= numRegionLoadsToRemember) { rLoads.remove(); } rLoads.add(entry.getValue()); loads.put(Bytes.toString(entry.getKey()), rLoads); } } for(CostFromRegionLoadFunction cost : regionLoadFunctions) { cost.setLoads(loads); } } /** * This is the main cost function. It will compute a cost associated with a proposed cluster * state. All different costs will be combined with their multipliers to produce a double cost. * * @param cluster The state of the cluster * @param previousCost the previous cost. This is used as an early out. * @return a double of a cost associated with the proposed cluster state. This cost is an * aggregate of all individual cost functions. */ protected double computeCost(Cluster cluster, double previousCost) { double total = 0; for (CostFunction c:costFunctions) { if (c.getMultiplier() <= 0) { continue; } total += c.getMultiplier() * c.cost(cluster); if (total > previousCost) { return total; } } return total; } abstract static class RegionPicker { abstract Pair, Pair> pick(Cluster cluster); /** * From a list of regions pick a random one. Null can be returned which * {@link StochasticLoadBalancer#balanceCluster(Map)} recognize as signal to try a region move * rather than swap. * * @param cluster The state of the cluster * @param server index of the server * @param chanceOfNoSwap Chance that this will decide to try a move rather * than a swap. * @return a random {@link HRegionInfo} or null if an asymmetrical move is * suggested. */ protected int pickRandomRegion(Cluster cluster, int server, double chanceOfNoSwap) { // Check to see if this is just a move. if (cluster.regionsPerServer[server].length == 0 || RANDOM.nextFloat() < chanceOfNoSwap) { // signal a move only. return -1; } int rand = RANDOM.nextInt(cluster.regionsPerServer[server].length); return cluster.regionsPerServer[server][rand]; } protected int pickRandomServer(Cluster cluster) { if (cluster.numServers < 1) { return -1; } return RANDOM.nextInt(cluster.numServers); } protected int pickOtherRandomServer(Cluster cluster, int serverIndex) { if (cluster.numServers < 2) { return -1; } while (true) { int otherServerIndex = pickRandomServer(cluster); if (otherServerIndex != serverIndex) { return otherServerIndex; } } } protected Pair pickRandomRegions(Cluster cluster, int thisServer, int otherServer) { if (thisServer < 0 || otherServer < 0) { return new Pair(-1, -1); } // Decide who is most likely to need another region int thisRegionCount = cluster.getNumRegions(thisServer); int otherRegionCount = cluster.getNumRegions(otherServer); // Assign the chance based upon the above double thisChance = (thisRegionCount > otherRegionCount) ? 0 : 0.5; double otherChance = (thisRegionCount <= otherRegionCount) ? 0 : 0.5; int thisRegion = pickRandomRegion(cluster, thisServer, thisChance); int otherRegion = pickRandomRegion(cluster, otherServer, otherChance); return new Pair(thisRegion, otherRegion); } } static class RandomRegionPicker extends RegionPicker { @Override Pair, Pair> pick(Cluster cluster) { int thisServer = pickRandomServer(cluster); // Pick the other server int otherServer = pickOtherRandomServer(cluster, thisServer); Pair regions = pickRandomRegions(cluster, thisServer, otherServer); return new Pair, Pair>( new Pair(thisServer, regions.getFirst()), new Pair(otherServer, regions.getSecond()) ); } } public static class LoadPicker extends RegionPicker { @Override Pair, Pair> pick(Cluster cluster) { cluster.sortServersByRegionCount(); int thisServer = pickMostLoadedServer(cluster, -1); int otherServer = pickLeastLoadedServer(cluster, thisServer); Pair regions = pickRandomRegions(cluster, thisServer, otherServer); return new Pair, Pair>( new Pair(thisServer, regions.getFirst()), new Pair(otherServer, regions.getSecond()) ); } private int pickLeastLoadedServer(final Cluster cluster, int thisServer) { Integer[] servers = cluster.serverIndicesSortedByRegionCount; int index = 0; while (servers[index] == null || servers[index] == thisServer) { index++; if (index == servers.length) { return -1; } } return servers[index]; } private int pickMostLoadedServer(final Cluster cluster, int thisServer) { Integer[] servers = cluster.serverIndicesSortedByRegionCount; int index = servers.length - 1; while (servers[index] == null || servers[index] == thisServer) { index--; if (index < 0) { return -1; } } return servers[index]; } } static class LocalityBasedPicker extends RegionPicker { private MasterServices masterServices; LocalityBasedPicker(MasterServices masterServices) { this.masterServices = masterServices; } @Override Pair, Pair> pick(Cluster cluster) { if (this.masterServices == null) { return new Pair, Pair>( new Pair(-1,-1), new Pair(-1,-1) ); } // Pick a random region server int thisServer = pickRandomServer(cluster); // Pick a random region on this server int thisRegion = pickRandomRegion(cluster, thisServer, 0.0f); if (thisRegion == -1) { return new Pair, Pair>( new Pair(-1,-1), new Pair(-1,-1) ); } // Pick the server with the highest locality int otherServer = pickHighestLocalityServer(cluster, thisServer, thisRegion); // pick an region on the other server to potentially swap int otherRegion = this.pickRandomRegion(cluster, otherServer, 0.5f); return new Pair, Pair>( new Pair(thisServer,thisRegion), new Pair(otherServer,otherRegion) ); } private int pickHighestLocalityServer(Cluster cluster, int thisServer, int thisRegion) { int[] regionLocations = cluster.regionLocations[thisRegion]; if (regionLocations == null || regionLocations.length <= 1) { return pickOtherRandomServer(cluster, thisServer); } for (int loc : regionLocations) { if (loc >= 0 && loc != thisServer) { // find the first suitable server return loc; } } // no location found return pickOtherRandomServer(cluster, thisServer); } void setServices(MasterServices services) { this.masterServices = services; } } /** * Base class of StochasticLoadBalancer's Cost Functions. */ public abstract static class CostFunction { private float multiplier = 0; private Configuration conf; CostFunction(Configuration c) { this.conf = c; } float getMultiplier() { return multiplier; } void setMultiplier(float m) { this.multiplier = m; } abstract double cost(Cluster cluster); /** * Function to compute a scaled cost using {@link DescriptiveStatistics}. It * assumes that this is a zero sum set of costs. It assumes that the worst case * possible is all of the elements in one region server and the rest having 0. * * @param stats the costs * @return a scaled set of costs. */ protected double costFromArray(double[] stats) { double totalCost = 0; double total = getSum(stats); double mean = total/((double)stats.length); double count = stats.length; // Compute max as if all region servers had 0 and one had the sum of all costs. This must be // a zero sum cost for this to make sense. double max = ((count - 1) * mean) + (total - mean); // It's possible that there aren't enough regions to go around double min; if (count > total) { min = ((count - total) * mean) + ((1 - mean) * total); } else { // Some will have 1 more than everything else. int numHigh = (int) (total - (Math.floor(mean) * count)); int numLow = (int) (count - numHigh); min = (numHigh * (Math.ceil(mean) - mean)) + (numLow * (mean - Math.floor(mean))); } min = Math.max(0, min); for (int i=0; i maxMoves) { return 1000000; // return a number much greater than any of the other cost } // hbase:meta region is special if (cluster.numMovedMetaRegions > 0) { // assume each hbase:meta region move costs 10 times moveCost += META_MOVE_COST_MULT * cluster.numMovedMetaRegions; } return scale(0, Math.min(cluster.numRegions, maxMoves) + META_MOVE_COST_MULT, moveCost); } } /** * Compute the cost of a potential cluster state from skew in number of * regions on a cluster. */ public static class RegionCountSkewCostFunction extends CostFunction { private static final String REGION_COUNT_SKEW_COST_KEY = "hbase.master.balancer.stochastic.regionCountCost"; private static final float DEFAULT_REGION_COUNT_SKEW_COST = 500; private double[] stats = null; RegionCountSkewCostFunction(Configuration conf) { super(conf); // Load multiplier should be the greatest as it is the most general way to balance data. this.setMultiplier(conf.getFloat(REGION_COUNT_SKEW_COST_KEY, DEFAULT_REGION_COUNT_SKEW_COST)); } @Override double cost(Cluster cluster) { if (stats == null || stats.length != cluster.numServers) { stats = new double[cluster.numServers]; } for (int i =0; i < cluster.numServers; i++) { stats[i] = cluster.regionsPerServer[i].length; } return costFromArray(stats); } } /** * Compute the cost of a potential cluster configuration based upon how evenly * distributed tables are. */ public static class TableSkewCostFunction extends CostFunction { private static final String TABLE_SKEW_COST_KEY = "hbase.master.balancer.stochastic.tableSkewCost"; private static final float DEFAULT_TABLE_SKEW_COST = 35; TableSkewCostFunction(Configuration conf) { super(conf); this.setMultiplier(conf.getFloat(TABLE_SKEW_COST_KEY, DEFAULT_TABLE_SKEW_COST)); } @Override double cost(Cluster cluster) { double max = cluster.numRegions; double min = ((double) cluster.numRegions) / cluster.numServers; double value = 0; for (int i = 0; i < cluster.numMaxRegionsPerTable.length; i++) { value += cluster.numMaxRegionsPerTable[i]; } return scale(min, max, value); } } /** * Compute a cost of a potential cluster configuration based upon where * {@link org.apache.hadoop.hbase.regionserver.StoreFile}s are located. */ public static class LocalityCostFunction extends CostFunction { private static final String LOCALITY_COST_KEY = "hbase.master.balancer.stochastic.localityCost"; private static final float DEFAULT_LOCALITY_COST = 25; private MasterServices services; LocalityCostFunction(Configuration conf, MasterServices srv) { super(conf); this.setMultiplier(conf.getFloat(LOCALITY_COST_KEY, DEFAULT_LOCALITY_COST)); this.services = srv; } void setServices(MasterServices srvc) { this.services = srvc; } @Override double cost(Cluster cluster) { double max = 0; double cost = 0; // If there's no master so there's no way anything else works. if (this.services == null) { return cost; } for (int i = 0; i < cluster.regionLocations.length; i++) { max += 1; int serverIndex = cluster.regionIndexToServerIndex[i]; int[] regionLocations = cluster.regionLocations[i]; // If we can't find where the data is getTopBlock returns null. // so count that as being the best possible. if (regionLocations == null) { continue; } int index = -1; for (int j = 0; j < regionLocations.length; j++) { if (regionLocations[j] >= 0 && regionLocations[j] == serverIndex) { index = j; break; } } if (index < 0) { if (regionLocations.length > 0) { cost += 1; } } else { cost += (double) index / (double) regionLocations.length; } } return scale(0, max, cost); } } /** * Base class the allows writing costs functions from rolling average of some * number from RegionLoad. */ public abstract static class CostFromRegionLoadFunction extends CostFunction { private ClusterStatus clusterStatus = null; private Map> loads = null; private double[] stats = null; CostFromRegionLoadFunction(Configuration conf) { super(conf); } void setClusterStatus(ClusterStatus status) { this.clusterStatus = status; } void setLoads(Map> l) { this.loads = l; } @Override double cost(Cluster cluster) { if (clusterStatus == null || loads == null) { return 0; } if (stats == null || stats.length != cluster.numServers) { stats = new double[cluster.numServers]; } for (int i =0; i < stats.length; i++) { //Cost this server has from RegionLoad long cost = 0; // for every region on this server get the rl for(int regionIndex:cluster.regionsPerServer[i]) { Collection regionLoadList = cluster.regionLoads[regionIndex]; // Now if we found a region load get the type of cost that was requested. if (regionLoadList != null) { cost += getRegionLoadCost(regionLoadList); } } // Add the total cost to the stats. stats[i] = cost; } // Now return the scaled cost from data held in the stats object. return costFromArray(stats); } protected double getRegionLoadCost(Collection regionLoadList) { double cost = 0; for (RegionLoad rl : regionLoadList) { double toAdd = getCostFromRl(rl); if (cost == 0) { cost = toAdd; } else { cost = (.5 * cost) + (.5 * toAdd); } } return cost; } protected abstract double getCostFromRl(RegionLoad rl); } /** * Compute the cost of total number of read requests The more unbalanced the higher the * computed cost will be. This uses a rolling average of regionload. */ public static class ReadRequestCostFunction extends CostFromRegionLoadFunction { private static final String READ_REQUEST_COST_KEY = "hbase.master.balancer.stochastic.readRequestCost"; private static final float DEFAULT_READ_REQUEST_COST = 5; ReadRequestCostFunction(Configuration conf) { super(conf); this.setMultiplier(conf.getFloat(READ_REQUEST_COST_KEY, DEFAULT_READ_REQUEST_COST)); } @Override protected double getCostFromRl(RegionLoad rl) { return rl.getReadRequestsCount(); } } /** * Compute the cost of total number of write requests. The more unbalanced the higher the * computed cost will be. This uses a rolling average of regionload. */ public static class WriteRequestCostFunction extends CostFromRegionLoadFunction { private static final String WRITE_REQUEST_COST_KEY = "hbase.master.balancer.stochastic.writeRequestCost"; private static final float DEFAULT_WRITE_REQUEST_COST = 5; WriteRequestCostFunction(Configuration conf) { super(conf); this.setMultiplier(conf.getFloat(WRITE_REQUEST_COST_KEY, DEFAULT_WRITE_REQUEST_COST)); } @Override protected double getCostFromRl(RegionLoad rl) { return rl.getWriteRequestsCount(); } } /** * Compute the cost of total memstore size. The more unbalanced the higher the * computed cost will be. This uses a rolling average of regionload. */ public static class MemstoreSizeCostFunction extends CostFromRegionLoadFunction { private static final String MEMSTORE_SIZE_COST_KEY = "hbase.master.balancer.stochastic.memstoreSizeCost"; private static final float DEFAULT_MEMSTORE_SIZE_COST = 5; MemstoreSizeCostFunction(Configuration conf) { super(conf); this.setMultiplier(conf.getFloat(MEMSTORE_SIZE_COST_KEY, DEFAULT_MEMSTORE_SIZE_COST)); } @Override protected double getCostFromRl(RegionLoad rl) { return rl.getMemStoreSizeMB(); } } /** * Compute the cost of total open storefiles size. The more unbalanced the higher the * computed cost will be. This uses a rolling average of regionload. */ public static class StoreFileCostFunction extends CostFromRegionLoadFunction { private static final String STOREFILE_SIZE_COST_KEY = "hbase.master.balancer.stochastic.storefileSizeCost"; private static final float DEFAULT_STOREFILE_SIZE_COST = 5; StoreFileCostFunction(Configuration conf) { super(conf); this.setMultiplier(conf.getFloat(STOREFILE_SIZE_COST_KEY, DEFAULT_STOREFILE_SIZE_COST)); } @Override protected double getCostFromRl(RegionLoad rl) { return rl.getStorefileSizeMB(); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy