org.apache.hadoop.hbase.io.hfile.HFileBlock Maven / Gradle / Ivy
Show all versions of hbase-server Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.io.hfile;
import java.io.ByteArrayOutputStream;
import java.io.DataInputStream;
import java.io.DataOutput;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.HConstants;
import org.apache.hadoop.hbase.classification.InterfaceAudience;
import org.apache.hadoop.hbase.fs.HFileSystem;
import org.apache.hadoop.hbase.io.ByteBufferInputStream;
import org.apache.hadoop.hbase.io.FSDataInputStreamWrapper;
import org.apache.hadoop.hbase.io.encoding.DataBlockEncoding;
import org.apache.hadoop.hbase.io.encoding.HFileBlockDecodingContext;
import org.apache.hadoop.hbase.io.encoding.HFileBlockDefaultDecodingContext;
import org.apache.hadoop.hbase.io.encoding.HFileBlockDefaultEncodingContext;
import org.apache.hadoop.hbase.io.encoding.HFileBlockEncodingContext;
import org.apache.hadoop.hbase.util.ByteBufferUtils;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.hbase.util.ChecksumType;
import org.apache.hadoop.hbase.util.ClassSize;
import org.apache.hadoop.io.IOUtils;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Preconditions;
/**
* Reading {@link HFile} version 1 and 2 blocks, and writing version 2 blocks.
*
* - In version 1 all blocks are always compressed or uncompressed, as
* specified by the {@link HFile}'s compression algorithm, with a type-specific
* magic record stored in the beginning of the compressed data (i.e. one needs
* to uncompress the compressed block to determine the block type). There is
* only a single compression algorithm setting for all blocks. Offset and size
* information from the block index are required to read a block.
*
- In version 2 a block is structured as follows:
*
* - header (see Writer#finishBlock())
*
* - Magic record identifying the block type (8 bytes)
*
- Compressed block size, excluding header, including checksum (4 bytes)
*
- Uncompressed block size, excluding header, excluding checksum (4 bytes)
*
- The offset of the previous block of the same type (8 bytes). This is
* used to be able to navigate to the previous block without going to the block
*
- For minorVersions >=1, the ordinal describing checksum type (1 byte)
*
- For minorVersions >=1, the number of data bytes/checksum chunk (4 bytes)
*
- For minorVersions >=1, the size of data on disk, including header,
* excluding checksums (4 bytes)
*
*
* - Raw/Compressed/Encrypted/Encoded data. The compression algorithm is the
* same for all the blocks in the {@link HFile}, similarly to what was done in
* version 1.
*
- For minorVersions >=1, a series of 4 byte checksums, one each for
* the number of bytes specified by bytesPerChecksum.
*
*
*/
@InterfaceAudience.Private
public class HFileBlock implements Cacheable {
/**
* On a checksum failure on a Reader, these many suceeding read
* requests switch back to using hdfs checksums before auto-reenabling
* hbase checksum verification.
*/
static final int CHECKSUM_VERIFICATION_NUM_IO_THRESHOLD = 3;
public static final boolean FILL_HEADER = true;
public static final boolean DONT_FILL_HEADER = false;
/**
* The size of block header when blockType is {@link BlockType#ENCODED_DATA}.
* This extends normal header by adding the id of encoder.
*/
public static final int ENCODED_HEADER_SIZE = HConstants.HFILEBLOCK_HEADER_SIZE
+ DataBlockEncoding.ID_SIZE;
static final byte[] DUMMY_HEADER_NO_CHECKSUM =
new byte[HConstants.HFILEBLOCK_HEADER_SIZE_NO_CHECKSUM];
public static final int BYTE_BUFFER_HEAP_SIZE = (int) ClassSize.estimateBase(
ByteBuffer.wrap(new byte[0], 0, 0).getClass(), false);
// meta.usesHBaseChecksum+offset+nextBlockOnDiskSizeWithHeader
public static final int EXTRA_SERIALIZATION_SPACE = Bytes.SIZEOF_BYTE + Bytes.SIZEOF_INT
+ Bytes.SIZEOF_LONG;
/**
* Each checksum value is an integer that can be stored in 4 bytes.
*/
static final int CHECKSUM_SIZE = Bytes.SIZEOF_INT;
static final CacheableDeserializer blockDeserializer =
new CacheableDeserializer() {
public HFileBlock deserialize(ByteBuffer buf, boolean reuse) throws IOException{
buf.limit(buf.limit() - HFileBlock.EXTRA_SERIALIZATION_SPACE).rewind();
ByteBuffer newByteBuffer;
if (reuse) {
newByteBuffer = buf.slice();
} else {
newByteBuffer = ByteBuffer.allocate(buf.limit());
newByteBuffer.put(buf);
}
buf.position(buf.limit());
buf.limit(buf.limit() + HFileBlock.EXTRA_SERIALIZATION_SPACE);
boolean usesChecksum = buf.get() == (byte)1;
HFileBlock hFileBlock = new HFileBlock(newByteBuffer, usesChecksum);
hFileBlock.offset = buf.getLong();
hFileBlock.nextBlockOnDiskSizeWithHeader = buf.getInt();
if (hFileBlock.hasNextBlockHeader()) {
hFileBlock.buf.limit(hFileBlock.buf.limit() - hFileBlock.headerSize());
}
return hFileBlock;
}
@Override
public int getDeserialiserIdentifier() {
return deserializerIdentifier;
}
@Override
public HFileBlock deserialize(ByteBuffer b) throws IOException {
return deserialize(b, false);
}
};
private static final int deserializerIdentifier;
static {
deserializerIdentifier = CacheableDeserializerIdManager
.registerDeserializer(blockDeserializer);
}
/** Type of block. Header field 0. */
private BlockType blockType;
/** Size on disk excluding header, including checksum. Header field 1. */
private int onDiskSizeWithoutHeader;
/** Size of pure data. Does not include header or checksums. Header field 2. */
private final int uncompressedSizeWithoutHeader;
/** The offset of the previous block on disk. Header field 3. */
private final long prevBlockOffset;
/**
* Size on disk of header + data. Excludes checksum. Header field 6,
* OR calculated from {@link #onDiskSizeWithoutHeader} when using HDFS checksum.
*/
private final int onDiskDataSizeWithHeader;
/** The in-memory representation of the hfile block */
private ByteBuffer buf;
/** Meta data that holds meta information on the hfileblock */
private HFileContext fileContext;
/**
* The offset of this block in the file. Populated by the reader for
* convenience of access. This offset is not part of the block header.
*/
private long offset = -1;
/**
* The on-disk size of the next block, including the header, obtained by
* peeking into the first {@link HConstants#HFILEBLOCK_HEADER_SIZE} bytes of the next block's
* header, or -1 if unknown.
*/
private int nextBlockOnDiskSizeWithHeader = -1;
/**
* Creates a new {@link HFile} block from the given fields. This constructor
* is mostly used when the block data has already been read and uncompressed,
* and is sitting in a byte buffer.
*
* @param blockType the type of this block, see {@link BlockType}
* @param onDiskSizeWithoutHeader see {@link #onDiskSizeWithoutHeader}
* @param uncompressedSizeWithoutHeader see {@link #uncompressedSizeWithoutHeader}
* @param prevBlockOffset see {@link #prevBlockOffset}
* @param buf block header ({@link HConstants#HFILEBLOCK_HEADER_SIZE} bytes) followed by
* uncompressed data. This
* @param fillHeader when true, parse {@code buf} and override the first 4 header fields.
* @param offset the file offset the block was read from
* @param onDiskDataSizeWithHeader see {@link #onDiskDataSizeWithHeader}
* @param fileContext HFile meta data
*/
HFileBlock(BlockType blockType, int onDiskSizeWithoutHeader, int uncompressedSizeWithoutHeader,
long prevBlockOffset, ByteBuffer buf, boolean fillHeader, long offset,
int onDiskDataSizeWithHeader, HFileContext fileContext) {
this.blockType = blockType;
this.onDiskSizeWithoutHeader = onDiskSizeWithoutHeader;
this.uncompressedSizeWithoutHeader = uncompressedSizeWithoutHeader;
this.prevBlockOffset = prevBlockOffset;
this.buf = buf;
this.offset = offset;
this.onDiskDataSizeWithHeader = onDiskDataSizeWithHeader;
this.fileContext = fileContext;
if (fillHeader)
overwriteHeader();
this.buf.rewind();
}
/**
* Copy constructor. Creates a shallow copy of {@code that}'s buffer.
*/
HFileBlock(HFileBlock that) {
this.blockType = that.blockType;
this.onDiskSizeWithoutHeader = that.onDiskSizeWithoutHeader;
this.uncompressedSizeWithoutHeader = that.uncompressedSizeWithoutHeader;
this.prevBlockOffset = that.prevBlockOffset;
this.buf = that.buf.duplicate();
this.offset = that.offset;
this.onDiskDataSizeWithHeader = that.onDiskDataSizeWithHeader;
this.fileContext = that.fileContext;
this.nextBlockOnDiskSizeWithHeader = that.nextBlockOnDiskSizeWithHeader;
}
/**
* Creates a block from an existing buffer starting with a header. Rewinds
* and takes ownership of the buffer. By definition of rewind, ignores the
* buffer position, but if you slice the buffer beforehand, it will rewind
* to that point. The reason this has a minorNumber and not a majorNumber is
* because majorNumbers indicate the format of a HFile whereas minorNumbers
* indicate the format inside a HFileBlock.
*/
HFileBlock(ByteBuffer b, boolean usesHBaseChecksum) throws IOException {
b.rewind();
blockType = BlockType.read(b);
onDiskSizeWithoutHeader = b.getInt();
uncompressedSizeWithoutHeader = b.getInt();
prevBlockOffset = b.getLong();
HFileContextBuilder contextBuilder = new HFileContextBuilder();
contextBuilder.withHBaseCheckSum(usesHBaseChecksum);
if (usesHBaseChecksum) {
contextBuilder.withChecksumType(ChecksumType.codeToType(b.get()));
contextBuilder.withBytesPerCheckSum(b.getInt());
this.onDiskDataSizeWithHeader = b.getInt();
} else {
contextBuilder.withChecksumType(ChecksumType.NULL);
contextBuilder.withBytesPerCheckSum(0);
this.onDiskDataSizeWithHeader = onDiskSizeWithoutHeader +
HConstants.HFILEBLOCK_HEADER_SIZE_NO_CHECKSUM;
}
this.fileContext = contextBuilder.build();
buf = b;
buf.rewind();
}
public BlockType getBlockType() {
return blockType;
}
/** @return get data block encoding id that was used to encode this block */
public short getDataBlockEncodingId() {
if (blockType != BlockType.ENCODED_DATA) {
throw new IllegalArgumentException("Querying encoder ID of a block " +
"of type other than " + BlockType.ENCODED_DATA + ": " + blockType);
}
return buf.getShort(headerSize());
}
/**
* @return the on-disk size of header + data part + checksum.
*/
public int getOnDiskSizeWithHeader() {
return onDiskSizeWithoutHeader + headerSize();
}
/**
* @return the on-disk size of the data part + checksum (header excluded).
*/
public int getOnDiskSizeWithoutHeader() {
return onDiskSizeWithoutHeader;
}
/**
* @return the uncompressed size of data part (header and checksum excluded).
*/
public int getUncompressedSizeWithoutHeader() {
return uncompressedSizeWithoutHeader;
}
/**
* @return the offset of the previous block of the same type in the file, or
* -1 if unknown
*/
public long getPrevBlockOffset() {
return prevBlockOffset;
}
/**
* Rewinds {@code buf} and writes first 4 header fields. {@code buf} position
* is modified as side-effect.
*/
private void overwriteHeader() {
buf.rewind();
blockType.write(buf);
buf.putInt(onDiskSizeWithoutHeader);
buf.putInt(uncompressedSizeWithoutHeader);
buf.putLong(prevBlockOffset);
if (this.fileContext.isUseHBaseChecksum()) {
buf.put(fileContext.getChecksumType().getCode());
buf.putInt(fileContext.getBytesPerChecksum());
buf.putInt(onDiskDataSizeWithHeader);
}
}
/**
* Returns a buffer that does not include the header or checksum.
*
* @return the buffer with header skipped and checksum omitted.
*/
public ByteBuffer getBufferWithoutHeader() {
ByteBuffer dup = this.buf.duplicate();
dup.position(headerSize());
dup.limit(buf.limit() - totalChecksumBytes());
return dup.slice();
}
/**
* Returns the buffer this block stores internally. The clients must not
* modify the buffer object. This method has to be public because it is
* used in {@link org.apache.hadoop.hbase.util.CompoundBloomFilter}
* to avoid object creation on every Bloom filter lookup, but has to
* be used with caution. Checksum data is not included in the returned
* buffer but header data is.
*
* @return the buffer of this block for read-only operations
*/
public ByteBuffer getBufferReadOnly() {
ByteBuffer dup = this.buf.duplicate();
dup.limit(buf.limit() - totalChecksumBytes());
return dup.slice();
}
/**
* Returns the buffer of this block, including header data. The clients must
* not modify the buffer object. This method has to be public because it is
* used in {@link org.apache.hadoop.hbase.io.hfile.bucket.BucketCache} to avoid buffer copy.
*
* @return the buffer with header and checksum included for read-only operations
*/
public ByteBuffer getBufferReadOnlyWithHeader() {
ByteBuffer dup = this.buf.duplicate();
return dup.slice();
}
/**
* Returns a byte buffer of this block, including header data and checksum, positioned at
* the beginning of header. The underlying data array is not copied.
*
* @return the byte buffer with header and checksum included
*/
ByteBuffer getBufferWithHeader() {
ByteBuffer dupBuf = buf.duplicate();
dupBuf.rewind();
return dupBuf;
}
private void sanityCheckAssertion(long valueFromBuf, long valueFromField,
String fieldName) throws IOException {
if (valueFromBuf != valueFromField) {
throw new AssertionError(fieldName + " in the buffer (" + valueFromBuf
+ ") is different from that in the field (" + valueFromField + ")");
}
}
private void sanityCheckAssertion(BlockType valueFromBuf, BlockType valueFromField)
throws IOException {
if (valueFromBuf != valueFromField) {
throw new IOException("Block type stored in the buffer: " +
valueFromBuf + ", block type field: " + valueFromField);
}
}
/**
* Checks if the block is internally consistent, i.e. the first
* {@link HConstants#HFILEBLOCK_HEADER_SIZE} bytes of the buffer contain a
* valid header consistent with the fields. Assumes a packed block structure.
* This function is primary for testing and debugging, and is not
* thread-safe, because it alters the internal buffer pointer.
*/
void sanityCheck() throws IOException {
buf.rewind();
sanityCheckAssertion(BlockType.read(buf), blockType);
sanityCheckAssertion(buf.getInt(), onDiskSizeWithoutHeader,
"onDiskSizeWithoutHeader");
sanityCheckAssertion(buf.getInt(), uncompressedSizeWithoutHeader,
"uncompressedSizeWithoutHeader");
sanityCheckAssertion(buf.getLong(), prevBlockOffset, "prevBlocKOffset");
if (this.fileContext.isUseHBaseChecksum()) {
sanityCheckAssertion(buf.get(), this.fileContext.getChecksumType().getCode(), "checksumType");
sanityCheckAssertion(buf.getInt(), this.fileContext.getBytesPerChecksum(), "bytesPerChecksum");
sanityCheckAssertion(buf.getInt(), onDiskDataSizeWithHeader, "onDiskDataSizeWithHeader");
}
int cksumBytes = totalChecksumBytes();
int expectedBufLimit = onDiskDataSizeWithHeader + cksumBytes;
if (buf.limit() != expectedBufLimit) {
throw new AssertionError("Expected buffer limit " + expectedBufLimit
+ ", got " + buf.limit());
}
// We might optionally allocate HFILEBLOCK_HEADER_SIZE more bytes to read the next
// block's header, so there are two sensible values for buffer capacity.
int hdrSize = headerSize();
if (buf.capacity() != expectedBufLimit &&
buf.capacity() != expectedBufLimit + hdrSize) {
throw new AssertionError("Invalid buffer capacity: " + buf.capacity() +
", expected " + expectedBufLimit + " or " + (expectedBufLimit + hdrSize));
}
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder()
.append("HFileBlock [")
.append(" fileOffset=").append(offset)
.append(" headerSize()=").append(headerSize())
.append(" blockType=").append(blockType)
.append(" onDiskSizeWithoutHeader=").append(onDiskSizeWithoutHeader)
.append(" uncompressedSizeWithoutHeader=").append(uncompressedSizeWithoutHeader)
.append(" prevBlockOffset=").append(prevBlockOffset)
.append(" isUseHBaseChecksum()=").append(fileContext.isUseHBaseChecksum());
if (fileContext.isUseHBaseChecksum()) {
sb.append(" checksumType=").append(ChecksumType.codeToType(this.buf.get(24)))
.append(" bytesPerChecksum=").append(this.buf.getInt(24 + 1))
.append(" onDiskDataSizeWithHeader=").append(onDiskDataSizeWithHeader);
} else {
sb.append(" onDiskDataSizeWithHeader=").append(onDiskDataSizeWithHeader)
.append("(").append(onDiskSizeWithoutHeader)
.append("+").append(HConstants.HFILEBLOCK_HEADER_SIZE_NO_CHECKSUM).append(")");
}
String dataBegin = null;
if (buf.hasArray()) {
dataBegin = Bytes.toStringBinary(buf.array(), buf.arrayOffset() + headerSize(),
Math.min(32, buf.limit() - buf.arrayOffset() - headerSize()));
} else {
ByteBuffer bufWithoutHeader = getBufferWithoutHeader();
byte[] dataBeginBytes = new byte[Math.min(32,
bufWithoutHeader.limit() - bufWithoutHeader.position())];
bufWithoutHeader.get(dataBeginBytes);
dataBegin = Bytes.toStringBinary(dataBeginBytes);
}
sb.append(" getOnDiskSizeWithHeader()=").append(getOnDiskSizeWithHeader())
.append(" totalChecksumBytes()=").append(totalChecksumBytes())
.append(" isUnpacked()=").append(isUnpacked())
.append(" buf=[ ").append(buf).append(" ]")
.append(" dataBeginsWith=").append(dataBegin)
.append(" fileContext=").append(fileContext)
.append(" ]");
return sb.toString();
}
/**
* Called after reading a block with provided onDiskSizeWithHeader.
*/
private void validateOnDiskSizeWithoutHeader(int expectedOnDiskSizeWithoutHeader)
throws IOException {
if (onDiskSizeWithoutHeader != expectedOnDiskSizeWithoutHeader) {
String dataBegin = null;
if (buf.hasArray()) {
dataBegin = Bytes.toStringBinary(buf.array(), buf.arrayOffset(), Math.min(32, buf.limit()));
} else {
ByteBuffer bufDup = getBufferReadOnly();
byte[] dataBeginBytes = new byte[Math.min(32, bufDup.limit() - bufDup.position())];
bufDup.get(dataBeginBytes);
dataBegin = Bytes.toStringBinary(dataBeginBytes);
}
String blockInfoMsg =
"Block offset: " + offset + ", data starts with: " + dataBegin;
throw new IOException("On-disk size without header provided is "
+ expectedOnDiskSizeWithoutHeader + ", but block "
+ "header contains " + onDiskSizeWithoutHeader + ". " +
blockInfoMsg);
}
}
/**
* Retrieves the decompressed/decrypted view of this block. An encoded block remains in its
* encoded structure. Internal structures are shared between instances where applicable.
*/
HFileBlock unpack(HFileContext fileContext, FSReader reader) throws IOException {
if (!fileContext.isCompressedOrEncrypted()) {
// TODO: cannot use our own fileContext here because HFileBlock(ByteBuffer, boolean),
// which is used for block serialization to L2 cache, does not preserve encoding and
// encryption details.
return this;
}
HFileBlock unpacked = new HFileBlock(this);
unpacked.allocateBuffer(); // allocates space for the decompressed block
HFileBlockDecodingContext ctx = blockType == BlockType.ENCODED_DATA ?
reader.getBlockDecodingContext() : reader.getDefaultBlockDecodingContext();
ByteBuffer dup = this.buf.duplicate();
dup.position(this.headerSize());
dup = dup.slice();
ctx.prepareDecoding(unpacked.getOnDiskSizeWithoutHeader(),
unpacked.getUncompressedSizeWithoutHeader(), unpacked.getBufferWithoutHeader(),
dup);
// Preserve the next block's header bytes in the new block if we have them.
if (unpacked.hasNextBlockHeader()) {
// Both the buffers are limited till checksum bytes and avoid the next block's header.
// Below call to copyFromBufferToBuffer() will try positional read/write from/to buffers when
// any of the buffer is DBB. So we change the limit on a dup buffer. No copying just create
// new BB objects
ByteBuffer inDup = this.buf.duplicate();
inDup.limit(inDup.limit() + headerSize());
ByteBuffer outDup = unpacked.buf.duplicate();
outDup.limit(outDup.limit() + unpacked.headerSize());
ByteBufferUtils.copyFromBufferToBuffer(
outDup,
inDup,
this.onDiskDataSizeWithHeader,
unpacked.headerSize() + unpacked.uncompressedSizeWithoutHeader
+ unpacked.totalChecksumBytes(), unpacked.headerSize());
}
return unpacked;
}
/**
* Return true when this buffer includes next block's header.
*/
private boolean hasNextBlockHeader() {
return nextBlockOnDiskSizeWithHeader > 0;
}
/**
* Always allocates a new buffer of the correct size. Copies header bytes
* from the existing buffer. Does not change header fields.
* Reserve room to keep checksum bytes too.
*/
private void allocateBuffer() {
int cksumBytes = totalChecksumBytes();
int headerSize = headerSize();
int capacityNeeded = headerSize + uncompressedSizeWithoutHeader +
cksumBytes + (hasNextBlockHeader() ? headerSize : 0);
// TODO we need consider allocating offheap here?
ByteBuffer newBuf = ByteBuffer.allocate(capacityNeeded);
// Copy header bytes into newBuf.
// newBuf is HBB so no issue in calling array()
ByteBuffer dup = buf.duplicate();
dup.position(0);
dup.get(newBuf.array(), newBuf.arrayOffset(), headerSize);
buf = newBuf;
// set limit to exclude next block's header
buf.limit(headerSize + uncompressedSizeWithoutHeader + cksumBytes);
}
/**
* Return true when this block's buffer has been unpacked, false otherwise. Note this is a
* calculated heuristic, not tracked attribute of the block.
*/
public boolean isUnpacked() {
final int cksumBytes = totalChecksumBytes();
final int headerSize = headerSize();
final int expectedCapacity = headerSize + uncompressedSizeWithoutHeader + cksumBytes;
final int bufCapacity = buf.capacity();
return bufCapacity == expectedCapacity || bufCapacity == expectedCapacity + headerSize;
}
/** An additional sanity-check in case no compression or encryption is being used. */
public void assumeUncompressed() throws IOException {
if (onDiskSizeWithoutHeader != uncompressedSizeWithoutHeader +
totalChecksumBytes()) {
throw new IOException("Using no compression but "
+ "onDiskSizeWithoutHeader=" + onDiskSizeWithoutHeader + ", "
+ "uncompressedSizeWithoutHeader=" + uncompressedSizeWithoutHeader
+ ", numChecksumbytes=" + totalChecksumBytes());
}
}
/**
* @param expectedType the expected type of this block
* @throws IOException if this block's type is different than expected
*/
public void expectType(BlockType expectedType) throws IOException {
if (blockType != expectedType) {
throw new IOException("Invalid block type: expected=" + expectedType
+ ", actual=" + blockType);
}
}
/** @return the offset of this block in the file it was read from */
public long getOffset() {
if (offset < 0) {
throw new IllegalStateException(
"HFile block offset not initialized properly");
}
return offset;
}
/**
* @return a byte stream reading the data + checksum of this block
*/
public DataInputStream getByteStream() {
ByteBuffer dup = this.buf.duplicate();
dup.position(this.headerSize());
return new DataInputStream(new ByteBufferInputStream(dup));
}
@Override
public long heapSize() {
long size = ClassSize.align(
ClassSize.OBJECT +
// Block type, byte buffer and meta references
3 * ClassSize.REFERENCE +
// On-disk size, uncompressed size, and next block's on-disk size
// bytePerChecksum and onDiskDataSize
4 * Bytes.SIZEOF_INT +
// This and previous block offset
2 * Bytes.SIZEOF_LONG +
// Heap size of the meta object. meta will be always not null.
fileContext.heapSize()
);
if (buf != null) {
// Deep overhead of the byte buffer. Needs to be aligned separately.
size += ClassSize.align(buf.capacity() + BYTE_BUFFER_HEAP_SIZE);
}
return ClassSize.align(size);
}
/**
* Read from an input stream. Analogous to
* {@link IOUtils#readFully(InputStream, byte[], int, int)}, but specifies a
* number of "extra" bytes that would be desirable but not absolutely
* necessary to read.
*
* @param in the input stream to read from
* @param buf the buffer to read into
* @param bufOffset the destination offset in the buffer
* @param necessaryLen the number of bytes that are absolutely necessary to
* read
* @param extraLen the number of extra bytes that would be nice to read
* @return true if succeeded reading the extra bytes
* @throws IOException if failed to read the necessary bytes
*/
public static boolean readWithExtra(InputStream in, byte[] buf,
int bufOffset, int necessaryLen, int extraLen) throws IOException {
int bytesRemaining = necessaryLen + extraLen;
while (bytesRemaining > 0) {
int ret = in.read(buf, bufOffset, bytesRemaining);
if (ret == -1 && bytesRemaining <= extraLen) {
// We could not read the "extra data", but that is OK.
break;
}
if (ret < 0) {
throw new IOException("Premature EOF from inputStream (read "
+ "returned " + ret + ", was trying to read " + necessaryLen
+ " necessary bytes and " + extraLen + " extra bytes, "
+ "successfully read "
+ (necessaryLen + extraLen - bytesRemaining));
}
bufOffset += ret;
bytesRemaining -= ret;
}
return bytesRemaining <= 0;
}
/**
* Read from an input stream. Analogous to
* {@link IOUtils#readFully(InputStream, byte[], int, int)}, but uses
* positional read and specifies a number of "extra" bytes that would be
* desirable but not absolutely necessary to read.
*
* @param in the input stream to read from
* @param position the position within the stream from which to start reading
* @param buf the buffer to read into
* @param bufOffset the destination offset in the buffer
* @param necessaryLen the number of bytes that are absolutely necessary to
* read
* @param extraLen the number of extra bytes that would be nice to read
* @return true if and only if extraLen is > 0 and reading those extra bytes
* was successful
* @throws IOException if failed to read the necessary bytes
*/
@VisibleForTesting
static boolean positionalReadWithExtra(FSDataInputStream in,
long position, byte[] buf, int bufOffset, int necessaryLen, int extraLen)
throws IOException {
int bytesRemaining = necessaryLen + extraLen;
int bytesRead = 0;
while (bytesRead < necessaryLen) {
int ret = in.read(position, buf, bufOffset, bytesRemaining);
if (ret < 0) {
throw new IOException("Premature EOF from inputStream (positional read "
+ "returned " + ret + ", was trying to read " + necessaryLen
+ " necessary bytes and " + extraLen + " extra bytes, "
+ "successfully read " + bytesRead);
}
position += ret;
bufOffset += ret;
bytesRemaining -= ret;
bytesRead += ret;
}
return bytesRead != necessaryLen && bytesRemaining <= 0;
}
/**
* @return the on-disk size of the next block (including the header size)
* that was read by peeking into the next block's header
*/
public int getNextBlockOnDiskSizeWithHeader() {
return nextBlockOnDiskSizeWithHeader;
}
/**
* Unified version 2 {@link HFile} block writer. The intended usage pattern
* is as follows:
*
* - Construct an {@link HFileBlock.Writer}, providing a compression algorithm.
*
- Call {@link Writer#startWriting} and get a data stream to write to.
*
- Write your data into the stream.
*
- Call {@link Writer#writeHeaderAndData(FSDataOutputStream)} as many times as you need to.
* store the serialized block into an external stream.
*
- Repeat to write more blocks.
*
*
*/
public static class Writer {
private enum State {
INIT,
WRITING,
BLOCK_READY
};
/** Writer state. Used to ensure the correct usage protocol. */
private State state = State.INIT;
/** Data block encoder used for data blocks */
private final HFileDataBlockEncoder dataBlockEncoder;
private HFileBlockEncodingContext dataBlockEncodingCtx;
/** block encoding context for non-data blocks */
private HFileBlockDefaultEncodingContext defaultBlockEncodingCtx;
/**
* The stream we use to accumulate data in uncompressed format for each
* block. We reset this stream at the end of each block and reuse it. The
* header is written as the first {@link HConstants#HFILEBLOCK_HEADER_SIZE} bytes into this
* stream.
*/
private ByteArrayOutputStream baosInMemory;
/**
* Current block type. Set in {@link #startWriting(BlockType)}. Could be
* changed in {@link #finishBlock()} from {@link BlockType#DATA}
* to {@link BlockType#ENCODED_DATA}.
*/
private BlockType blockType;
/**
* A stream that we write uncompressed bytes to, which compresses them and
* writes them to {@link #baosInMemory}.
*/
private DataOutputStream userDataStream;
// Size of actual data being written. Not considering the block encoding/compression. This
// includes the header size also.
private int unencodedDataSizeWritten;
/**
* Bytes to be written to the file system, including the header. Compressed
* if compression is turned on. It also includes the checksum data that
* immediately follows the block data. (header + data + checksums)
*/
private byte[] onDiskBytesWithHeader;
/**
* The size of the checksum data on disk. It is used only if data is
* not compressed. If data is compressed, then the checksums are already
* part of onDiskBytesWithHeader. If data is uncompressed, then this
* variable stores the checksum data for this block.
*/
private byte[] onDiskChecksum;
/**
* Valid in the READY state. Contains the header and the uncompressed (but
* potentially encoded, if this is a data block) bytes, so the length is
* {@link #uncompressedSizeWithoutHeader} +
* {@link org.apache.hadoop.hbase.HConstants#HFILEBLOCK_HEADER_SIZE}.
* Does not store checksums.
*/
private byte[] uncompressedBytesWithHeader;
/**
* Current block's start offset in the {@link HFile}. Set in
* {@link #writeHeaderAndData(FSDataOutputStream)}.
*/
private long startOffset;
/**
* Offset of previous block by block type. Updated when the next block is
* started.
*/
private long[] prevOffsetByType;
/** The offset of the previous block of the same type */
private long prevOffset;
/** Meta data that holds information about the hfileblock**/
private HFileContext fileContext;
/**
* @param dataBlockEncoder data block encoding algorithm to use
*/
public Writer(HFileDataBlockEncoder dataBlockEncoder, HFileContext fileContext) {
this.dataBlockEncoder = dataBlockEncoder != null
? dataBlockEncoder : NoOpDataBlockEncoder.INSTANCE;
defaultBlockEncodingCtx = new HFileBlockDefaultEncodingContext(null,
HConstants.HFILEBLOCK_DUMMY_HEADER, fileContext);
dataBlockEncodingCtx = this.dataBlockEncoder
.newDataBlockEncodingContext(HConstants.HFILEBLOCK_DUMMY_HEADER, fileContext);
if (fileContext.getBytesPerChecksum() < HConstants.HFILEBLOCK_HEADER_SIZE) {
throw new RuntimeException("Unsupported value of bytesPerChecksum. " +
" Minimum is " + HConstants.HFILEBLOCK_HEADER_SIZE + " but the configured value is " +
fileContext.getBytesPerChecksum());
}
baosInMemory = new ByteArrayOutputStream();
prevOffsetByType = new long[BlockType.values().length];
for (int i = 0; i < prevOffsetByType.length; ++i)
prevOffsetByType[i] = -1;
this.fileContext = fileContext;
}
/**
* Starts writing into the block. The previous block's data is discarded.
*
* @return the stream the user can write their data into
* @throws IOException
*/
public DataOutputStream startWriting(BlockType newBlockType)
throws IOException {
if (state == State.BLOCK_READY && startOffset != -1) {
// We had a previous block that was written to a stream at a specific
// offset. Save that offset as the last offset of a block of that type.
prevOffsetByType[blockType.getId()] = startOffset;
}
startOffset = -1;
blockType = newBlockType;
baosInMemory.reset();
baosInMemory.write(HConstants.HFILEBLOCK_DUMMY_HEADER);
state = State.WRITING;
// We will compress it later in finishBlock()
userDataStream = new DataOutputStream(baosInMemory);
if (newBlockType == BlockType.DATA) {
this.dataBlockEncoder.startBlockEncoding(dataBlockEncodingCtx, userDataStream);
}
this.unencodedDataSizeWritten = 0;
return userDataStream;
}
/**
* Writes the Cell to this block
* @param cell
* @throws IOException
*/
public void write(Cell cell) throws IOException{
expectState(State.WRITING);
this.unencodedDataSizeWritten += this.dataBlockEncoder.encode(cell, dataBlockEncodingCtx,
this.userDataStream);
}
/**
* Returns the stream for the user to write to. The block writer takes care
* of handling compression and buffering for caching on write. Can only be
* called in the "writing" state.
*
* @return the data output stream for the user to write to
*/
DataOutputStream getUserDataStream() {
expectState(State.WRITING);
return userDataStream;
}
/**
* Transitions the block writer from the "writing" state to the "block
* ready" state. Does nothing if a block is already finished.
*/
void ensureBlockReady() throws IOException {
Preconditions.checkState(state != State.INIT,
"Unexpected state: " + state);
if (state == State.BLOCK_READY)
return;
// This will set state to BLOCK_READY.
finishBlock();
}
/**
* An internal method that flushes the compressing stream (if using
* compression), serializes the header, and takes care of the separate
* uncompressed stream for caching on write, if applicable. Sets block
* write state to "block ready".
*/
private void finishBlock() throws IOException {
if (blockType == BlockType.DATA) {
BufferGrabbingByteArrayOutputStream baosInMemoryCopy =
new BufferGrabbingByteArrayOutputStream();
baosInMemory.writeTo(baosInMemoryCopy);
this.dataBlockEncoder.endBlockEncoding(dataBlockEncodingCtx, userDataStream,
baosInMemoryCopy.buf, blockType);
blockType = dataBlockEncodingCtx.getBlockType();
}
userDataStream.flush();
// This does an array copy, so it is safe to cache this byte array.
uncompressedBytesWithHeader = baosInMemory.toByteArray();
prevOffset = prevOffsetByType[blockType.getId()];
// We need to set state before we can package the block up for
// cache-on-write. In a way, the block is ready, but not yet encoded or
// compressed.
state = State.BLOCK_READY;
if (blockType == BlockType.DATA || blockType == BlockType.ENCODED_DATA) {
onDiskBytesWithHeader = dataBlockEncodingCtx
.compressAndEncrypt(uncompressedBytesWithHeader);
} else {
onDiskBytesWithHeader = defaultBlockEncodingCtx
.compressAndEncrypt(uncompressedBytesWithHeader);
}
int numBytes = (int) ChecksumUtil.numBytes(
onDiskBytesWithHeader.length,
fileContext.getBytesPerChecksum());
// put the header for on disk bytes
putHeader(onDiskBytesWithHeader, 0,
onDiskBytesWithHeader.length + numBytes,
uncompressedBytesWithHeader.length, onDiskBytesWithHeader.length);
// set the header for the uncompressed bytes (for cache-on-write)
putHeader(uncompressedBytesWithHeader, 0,
onDiskBytesWithHeader.length + numBytes,
uncompressedBytesWithHeader.length, onDiskBytesWithHeader.length);
onDiskChecksum = new byte[numBytes];
ChecksumUtil.generateChecksums(
onDiskBytesWithHeader, 0, onDiskBytesWithHeader.length,
onDiskChecksum, 0, fileContext.getChecksumType(), fileContext.getBytesPerChecksum());
}
public static class BufferGrabbingByteArrayOutputStream extends ByteArrayOutputStream {
private byte[] buf;
@Override
public void write(byte[] b, int off, int len) {
this.buf = b;
}
public byte[] getBuffer() {
return this.buf;
}
}
/**
* Put the header into the given byte array at the given offset.
* @param onDiskSize size of the block on disk header + data + checksum
* @param uncompressedSize size of the block after decompression (but
* before optional data block decoding) including header
* @param onDiskDataSize size of the block on disk with header
* and data but not including the checksums
*/
private void putHeader(byte[] dest, int offset, int onDiskSize,
int uncompressedSize, int onDiskDataSize) {
offset = blockType.put(dest, offset);
offset = Bytes.putInt(dest, offset, onDiskSize - HConstants.HFILEBLOCK_HEADER_SIZE);
offset = Bytes.putInt(dest, offset, uncompressedSize - HConstants.HFILEBLOCK_HEADER_SIZE);
offset = Bytes.putLong(dest, offset, prevOffset);
offset = Bytes.putByte(dest, offset, fileContext.getChecksumType().getCode());
offset = Bytes.putInt(dest, offset, fileContext.getBytesPerChecksum());
Bytes.putInt(dest, offset, onDiskDataSize);
}
/**
* Similar to {@link #writeHeaderAndData(FSDataOutputStream)}, but records
* the offset of this block so that it can be referenced in the next block
* of the same type.
*
* @param out
* @throws IOException
*/
public void writeHeaderAndData(FSDataOutputStream out) throws IOException {
long offset = out.getPos();
if (startOffset != -1 && offset != startOffset) {
throw new IOException("A " + blockType + " block written to a "
+ "stream twice, first at offset " + startOffset + ", then at "
+ offset);
}
startOffset = offset;
finishBlockAndWriteHeaderAndData((DataOutputStream) out);
}
/**
* Writes the header and the compressed data of this block (or uncompressed
* data when not using compression) into the given stream. Can be called in
* the "writing" state or in the "block ready" state. If called in the
* "writing" state, transitions the writer to the "block ready" state.
*
* @param out the output stream to write the
* @throws IOException
*/
protected void finishBlockAndWriteHeaderAndData(DataOutputStream out)
throws IOException {
ensureBlockReady();
out.write(onDiskBytesWithHeader);
out.write(onDiskChecksum);
}
/**
* Returns the header or the compressed data (or uncompressed data when not
* using compression) as a byte array. Can be called in the "writing" state
* or in the "block ready" state. If called in the "writing" state,
* transitions the writer to the "block ready" state. This returns
* the header + data + checksums stored on disk.
*
* @return header and data as they would be stored on disk in a byte array
* @throws IOException
*/
byte[] getHeaderAndDataForTest() throws IOException {
ensureBlockReady();
// This is not very optimal, because we are doing an extra copy.
// But this method is used only by unit tests.
byte[] output =
new byte[onDiskBytesWithHeader.length
+ onDiskChecksum.length];
System.arraycopy(onDiskBytesWithHeader, 0, output, 0,
onDiskBytesWithHeader.length);
System.arraycopy(onDiskChecksum, 0, output,
onDiskBytesWithHeader.length, onDiskChecksum.length);
return output;
}
/**
* Releases resources used by this writer.
*/
public void release() {
if (dataBlockEncodingCtx != null) {
dataBlockEncodingCtx.close();
dataBlockEncodingCtx = null;
}
if (defaultBlockEncodingCtx != null) {
defaultBlockEncodingCtx.close();
defaultBlockEncodingCtx = null;
}
}
/**
* Returns the on-disk size of the data portion of the block. This is the
* compressed size if compression is enabled. Can only be called in the
* "block ready" state. Header is not compressed, and its size is not
* included in the return value.
*
* @return the on-disk size of the block, not including the header.
*/
int getOnDiskSizeWithoutHeader() {
expectState(State.BLOCK_READY);
return onDiskBytesWithHeader.length
+ onDiskChecksum.length
- HConstants.HFILEBLOCK_HEADER_SIZE;
}
/**
* Returns the on-disk size of the block. Can only be called in the
* "block ready" state.
*
* @return the on-disk size of the block ready to be written, including the
* header size, the data and the checksum data.
*/
int getOnDiskSizeWithHeader() {
expectState(State.BLOCK_READY);
return onDiskBytesWithHeader.length + onDiskChecksum.length;
}
/**
* The uncompressed size of the block data. Does not include header size.
*/
int getUncompressedSizeWithoutHeader() {
expectState(State.BLOCK_READY);
return uncompressedBytesWithHeader.length - HConstants.HFILEBLOCK_HEADER_SIZE;
}
/**
* The uncompressed size of the block data, including header size.
*/
int getUncompressedSizeWithHeader() {
expectState(State.BLOCK_READY);
return uncompressedBytesWithHeader.length;
}
/** @return true if a block is being written */
public boolean isWriting() {
return state == State.WRITING;
}
/**
* Returns the number of bytes written into the current block so far, or
* zero if not writing the block at the moment. Note that this will return
* zero in the "block ready" state as well.
*
* @return the number of bytes written
*/
public int blockSizeWritten() {
if (state != State.WRITING) return 0;
return this.unencodedDataSizeWritten;
}
/**
* Returns the header followed by the uncompressed data, even if using
* compression. This is needed for storing uncompressed blocks in the block
* cache. Can be called in the "writing" state or the "block ready" state.
* Returns only the header and data, does not include checksum data.
*
* @return uncompressed block bytes for caching on write
*/
ByteBuffer getUncompressedBufferWithHeader() {
expectState(State.BLOCK_READY);
return ByteBuffer.wrap(uncompressedBytesWithHeader);
}
/**
* Returns the header followed by the on-disk (compressed/encoded/encrypted) data. This is
* needed for storing packed blocks in the block cache. Expects calling semantics identical to
* {@link #getUncompressedBufferWithHeader()}. Returns only the header and data,
* Does not include checksum data.
*
* @return packed block bytes for caching on write
*/
ByteBuffer getOnDiskBufferWithHeader() {
expectState(State.BLOCK_READY);
return ByteBuffer.wrap(onDiskBytesWithHeader);
}
private void expectState(State expectedState) {
if (state != expectedState) {
throw new IllegalStateException("Expected state: " + expectedState +
", actual state: " + state);
}
}
/**
* Takes the given {@link BlockWritable} instance, creates a new block of
* its appropriate type, writes the writable into this block, and flushes
* the block into the output stream. The writer is instructed not to buffer
* uncompressed bytes for cache-on-write.
*
* @param bw the block-writable object to write as a block
* @param out the file system output stream
* @throws IOException
*/
public void writeBlock(BlockWritable bw, FSDataOutputStream out)
throws IOException {
bw.writeToBlock(startWriting(bw.getBlockType()));
writeHeaderAndData(out);
}
/**
* Creates a new HFileBlock. Checksums have already been validated, so
* the byte buffer passed into the constructor of this newly created
* block does not have checksum data even though the header minor
* version is MINOR_VERSION_WITH_CHECKSUM. This is indicated by setting a
* 0 value in bytesPerChecksum.
*/
public HFileBlock getBlockForCaching(CacheConfig cacheConf) {
HFileContext newContext = new HFileContextBuilder()
.withBlockSize(fileContext.getBlocksize())
.withBytesPerCheckSum(0)
.withChecksumType(ChecksumType.NULL) // no checksums in cached data
.withCompression(fileContext.getCompression())
.withDataBlockEncoding(fileContext.getDataBlockEncoding())
.withHBaseCheckSum(fileContext.isUseHBaseChecksum())
.withCompressTags(fileContext.isCompressTags())
.withIncludesMvcc(fileContext.isIncludesMvcc())
.withIncludesTags(fileContext.isIncludesTags())
.build();
return new HFileBlock(blockType, getOnDiskSizeWithoutHeader(),
getUncompressedSizeWithoutHeader(), prevOffset,
cacheConf.shouldCacheCompressed(blockType.getCategory()) ?
getOnDiskBufferWithHeader() :
getUncompressedBufferWithHeader(),
FILL_HEADER, startOffset,
onDiskBytesWithHeader.length + onDiskChecksum.length, newContext);
}
}
/** Something that can be written into a block. */
public interface BlockWritable {
/** The type of block this data should use. */
BlockType getBlockType();
/**
* Writes the block to the provided stream. Must not write any magic
* records.
*
* @param out a stream to write uncompressed data into
*/
void writeToBlock(DataOutput out) throws IOException;
}
// Block readers and writers
/** An interface allowing to iterate {@link HFileBlock}s. */
public interface BlockIterator {
/**
* Get the next block, or null if there are no more blocks to iterate.
*/
HFileBlock nextBlock() throws IOException;
/**
* Similar to {@link #nextBlock()} but checks block type, throws an
* exception if incorrect, and returns the HFile block
*/
HFileBlock nextBlockWithBlockType(BlockType blockType) throws IOException;
}
/** A full-fledged reader with iteration ability. */
public interface FSReader {
/**
* Reads the block at the given offset in the file with the given on-disk
* size and uncompressed size.
*
* @param offset
* @param onDiskSize the on-disk size of the entire block, including all
* applicable headers, or -1 if unknown
* @param uncompressedSize the uncompressed size of the compressed part of
* the block, or -1 if unknown
* @return the newly read block
*/
HFileBlock readBlockData(long offset, long onDiskSize,
int uncompressedSize, boolean pread) throws IOException;
/**
* Creates a block iterator over the given portion of the {@link HFile}.
* The iterator returns blocks starting with offset such that offset <=
* startOffset < endOffset. Returned blocks are always unpacked.
*
* @param startOffset the offset of the block to start iteration with
* @param endOffset the offset to end iteration at (exclusive)
* @return an iterator of blocks between the two given offsets
*/
BlockIterator blockRange(long startOffset, long endOffset);
/** Closes the backing streams */
void closeStreams() throws IOException;
/** Get a decoder for {@link BlockType#ENCODED_DATA} blocks from this file. */
HFileBlockDecodingContext getBlockDecodingContext();
/** Get the default decoder for blocks from this file. */
HFileBlockDecodingContext getDefaultBlockDecodingContext();
}
/**
* A common implementation of some methods of {@link FSReader} and some
* tools for implementing HFile format version-specific block readers.
*/
private abstract static class AbstractFSReader implements FSReader {
/** Compression algorithm used by the {@link HFile} */
/** The size of the file we are reading from, or -1 if unknown. */
protected long fileSize;
/** The size of the header */
protected final int hdrSize;
/** The filesystem used to access data */
protected HFileSystem hfs;
/** The path (if any) where this data is coming from */
protected Path path;
private final Lock streamLock = new ReentrantLock();
/** The default buffer size for our buffered streams */
public static final int DEFAULT_BUFFER_SIZE = 1 << 20;
protected HFileContext fileContext;
public AbstractFSReader(long fileSize, HFileSystem hfs, Path path, HFileContext fileContext)
throws IOException {
this.fileSize = fileSize;
this.hfs = hfs;
this.path = path;
this.fileContext = fileContext;
this.hdrSize = headerSize(fileContext.isUseHBaseChecksum());
}
@Override
public BlockIterator blockRange(final long startOffset,
final long endOffset) {
final FSReader owner = this; // handle for inner class
return new BlockIterator() {
private long offset = startOffset;
@Override
public HFileBlock nextBlock() throws IOException {
if (offset >= endOffset)
return null;
HFileBlock b = readBlockData(offset, -1, -1, false);
offset += b.getOnDiskSizeWithHeader();
return b.unpack(fileContext, owner);
}
@Override
public HFileBlock nextBlockWithBlockType(BlockType blockType)
throws IOException {
HFileBlock blk = nextBlock();
if (blk.getBlockType() != blockType) {
throw new IOException("Expected block of type " + blockType
+ " but found " + blk.getBlockType());
}
return blk;
}
};
}
/**
* Does a positional read or a seek and read into the given buffer. Returns
* the on-disk size of the next block, or -1 if it could not be determined.
*
* @param dest destination buffer
* @param destOffset offset in the destination buffer
* @param size size of the block to be read
* @param peekIntoNextBlock whether to read the next block's on-disk size
* @param fileOffset position in the stream to read at
* @param pread whether we should do a positional read
* @param istream The input source of data
* @return the on-disk size of the next block with header size included, or
* -1 if it could not be determined
* @throws IOException
*/
protected int readAtOffset(FSDataInputStream istream,
byte[] dest, int destOffset, int size,
boolean peekIntoNextBlock, long fileOffset, boolean pread)
throws IOException {
if (peekIntoNextBlock &&
destOffset + size + hdrSize > dest.length) {
// We are asked to read the next block's header as well, but there is
// not enough room in the array.
throw new IOException("Attempted to read " + size + " bytes and " +
hdrSize + " bytes of next header into a " + dest.length +
"-byte array at offset " + destOffset);
}
if (!pread && streamLock.tryLock()) {
// Seek + read. Better for scanning.
try {
istream.seek(fileOffset);
long realOffset = istream.getPos();
if (realOffset != fileOffset) {
throw new IOException("Tried to seek to " + fileOffset + " to "
+ "read " + size + " bytes, but pos=" + realOffset
+ " after seek");
}
if (!peekIntoNextBlock) {
IOUtils.readFully(istream, dest, destOffset, size);
return -1;
}
// Try to read the next block header.
if (!readWithExtra(istream, dest, destOffset, size, hdrSize))
return -1;
} finally {
streamLock.unlock();
}
} else {
// Positional read. Better for random reads; or when the streamLock is already locked.
int extraSize = peekIntoNextBlock ? hdrSize : 0;
if (!positionalReadWithExtra(istream, fileOffset, dest, destOffset,
size, extraSize)) {
return -1;
}
}
assert peekIntoNextBlock;
return Bytes.toInt(dest, destOffset + size + BlockType.MAGIC_LENGTH) + hdrSize;
}
}
/**
* We always prefetch the header of the next block, so that we know its
* on-disk size in advance and can read it in one operation.
*/
private static class PrefetchedHeader {
long offset = -1;
byte[] header = new byte[HConstants.HFILEBLOCK_HEADER_SIZE];
final ByteBuffer buf = ByteBuffer.wrap(header, 0, HConstants.HFILEBLOCK_HEADER_SIZE);
}
/** Reads version 2 blocks from the filesystem. */
static class FSReaderImpl extends AbstractFSReader {
/** The file system stream of the underlying {@link HFile} that
* does or doesn't do checksum validations in the filesystem */
protected FSDataInputStreamWrapper streamWrapper;
private HFileBlockDecodingContext encodedBlockDecodingCtx;
/** Default context used when BlockType != {@link BlockType#ENCODED_DATA}. */
private final HFileBlockDefaultDecodingContext defaultDecodingCtx;
private ThreadLocal prefetchedHeaderForThread =
new ThreadLocal() {
@Override
public PrefetchedHeader initialValue() {
return new PrefetchedHeader();
}
};
public FSReaderImpl(FSDataInputStreamWrapper stream, long fileSize, HFileSystem hfs, Path path,
HFileContext fileContext) throws IOException {
super(fileSize, hfs, path, fileContext);
this.streamWrapper = stream;
// Older versions of HBase didn't support checksum.
this.streamWrapper.prepareForBlockReader(!fileContext.isUseHBaseChecksum());
defaultDecodingCtx = new HFileBlockDefaultDecodingContext(fileContext);
encodedBlockDecodingCtx = defaultDecodingCtx;
}
/**
* A constructor that reads files with the latest minor version.
* This is used by unit tests only.
*/
FSReaderImpl(FSDataInputStream istream, long fileSize, HFileContext fileContext)
throws IOException {
this(new FSDataInputStreamWrapper(istream), fileSize, null, null, fileContext);
}
/**
* Reads a version 2 block (version 1 blocks not supported and not expected). Tries to do as
* little memory allocation as possible, using the provided on-disk size.
*
* @param offset the offset in the stream to read at
* @param onDiskSizeWithHeaderL the on-disk size of the block, including
* the header, or -1 if unknown
* @param uncompressedSize the uncompressed size of the the block. Always
* expected to be -1. This parameter is only used in version 1.
* @param pread whether to use a positional read
*/
@Override
public HFileBlock readBlockData(long offset, long onDiskSizeWithHeaderL,
int uncompressedSize, boolean pread)
throws IOException {
// get a copy of the current state of whether to validate
// hbase checksums or not for this read call. This is not
// thread-safe but the one constaint is that if we decide
// to skip hbase checksum verification then we are
// guaranteed to use hdfs checksum verification.
boolean doVerificationThruHBaseChecksum = streamWrapper.shouldUseHBaseChecksum();
FSDataInputStream is = streamWrapper.getStream(doVerificationThruHBaseChecksum);
HFileBlock blk = readBlockDataInternal(is, offset,
onDiskSizeWithHeaderL,
uncompressedSize, pread,
doVerificationThruHBaseChecksum);
if (blk == null) {
HFile.LOG.warn("HBase checksum verification failed for file " +
path + " at offset " +
offset + " filesize " + fileSize +
". Retrying read with HDFS checksums turned on...");
if (!doVerificationThruHBaseChecksum) {
String msg = "HBase checksum verification failed for file " +
path + " at offset " +
offset + " filesize " + fileSize +
" but this cannot happen because doVerify is " +
doVerificationThruHBaseChecksum;
HFile.LOG.warn(msg);
throw new IOException(msg); // cannot happen case here
}
HFile.checksumFailures.incrementAndGet(); // update metrics
// If we have a checksum failure, we fall back into a mode where
// the next few reads use HDFS level checksums. We aim to make the
// next CHECKSUM_VERIFICATION_NUM_IO_THRESHOLD reads avoid
// hbase checksum verification, but since this value is set without
// holding any locks, it can so happen that we might actually do
// a few more than precisely this number.
is = this.streamWrapper.fallbackToFsChecksum(CHECKSUM_VERIFICATION_NUM_IO_THRESHOLD);
doVerificationThruHBaseChecksum = false;
blk = readBlockDataInternal(is, offset, onDiskSizeWithHeaderL,
uncompressedSize, pread,
doVerificationThruHBaseChecksum);
if (blk != null) {
HFile.LOG.warn("HDFS checksum verification suceeded for file " +
path + " at offset " +
offset + " filesize " + fileSize);
}
}
if (blk == null && !doVerificationThruHBaseChecksum) {
String msg = "readBlockData failed, possibly due to " +
"checksum verification failed for file " + path +
" at offset " + offset + " filesize " + fileSize;
HFile.LOG.warn(msg);
throw new IOException(msg);
}
// If there is a checksum mismatch earlier, then retry with
// HBase checksums switched off and use HDFS checksum verification.
// This triggers HDFS to detect and fix corrupt replicas. The
// next checksumOffCount read requests will use HDFS checksums.
// The decrementing of this.checksumOffCount is not thread-safe,
// but it is harmless because eventually checksumOffCount will be
// a negative number.
streamWrapper.checksumOk();
return blk;
}
/**
* Reads a version 2 block.
*
* @param offset the offset in the stream to read at
* @param onDiskSizeWithHeaderL the on-disk size of the block, including
* the header, or -1 if unknown
* @param uncompressedSize the uncompressed size of the the block. Always
* expected to be -1. This parameter is only used in version 1.
* @param pread whether to use a positional read
* @param verifyChecksum Whether to use HBase checksums.
* If HBase checksum is switched off, then use HDFS checksum.
* @return the HFileBlock or null if there is a HBase checksum mismatch
*/
private HFileBlock readBlockDataInternal(FSDataInputStream is, long offset,
long onDiskSizeWithHeaderL, int uncompressedSize, boolean pread,
boolean verifyChecksum)
throws IOException {
if (offset < 0) {
throw new IOException("Invalid offset=" + offset + " trying to read "
+ "block (onDiskSize=" + onDiskSizeWithHeaderL
+ ", uncompressedSize=" + uncompressedSize + ")");
}
if (uncompressedSize != -1) {
throw new IOException("Version 2 block reader API does not need " +
"the uncompressed size parameter");
}
if ((onDiskSizeWithHeaderL < hdrSize && onDiskSizeWithHeaderL != -1)
|| onDiskSizeWithHeaderL >= Integer.MAX_VALUE) {
throw new IOException("Invalid onDisksize=" + onDiskSizeWithHeaderL
+ ": expected to be at least " + hdrSize
+ " and at most " + Integer.MAX_VALUE + ", or -1 (offset="
+ offset + ", uncompressedSize=" + uncompressedSize + ")");
}
int onDiskSizeWithHeader = (int) onDiskSizeWithHeaderL;
// See if we can avoid reading the header. This is desirable, because
// we will not incur a backward seek operation if we have already
// read this block's header as part of the previous read's look-ahead.
// And we also want to skip reading the header again if it has already
// been read.
// TODO: How often does this optimization fire? Has to be same thread so the thread local
// is pertinent and we have to be reading next block as in a big scan.
PrefetchedHeader prefetchedHeader = prefetchedHeaderForThread.get();
ByteBuffer headerBuf = prefetchedHeader.offset == offset? prefetchedHeader.buf: null;
// Allocate enough space to fit the next block's header too.
int nextBlockOnDiskSize = 0;
byte[] onDiskBlock = null;
HFileBlock b = null;
if (onDiskSizeWithHeader > 0) {
// We know the total on-disk size. Read the entire block into memory,
// then parse the header. This code path is used when
// doing a random read operation relying on the block index, as well as
// when the client knows the on-disk size from peeking into the next
// block's header (e.g. this block's header) when reading the previous
// block. This is the faster and more preferable case.
// Size that we have to skip in case we have already read the header.
int preReadHeaderSize = headerBuf == null ? 0 : hdrSize;
onDiskBlock = new byte[onDiskSizeWithHeader + hdrSize]; // room for this block plus the
// next block's header
nextBlockOnDiskSize = readAtOffset(is, onDiskBlock,
preReadHeaderSize, onDiskSizeWithHeader - preReadHeaderSize,
true, offset + preReadHeaderSize, pread);
if (headerBuf != null) {
// the header has been read when reading the previous block, copy
// to this block's header
// headerBuf is HBB
assert headerBuf.hasArray();
System.arraycopy(headerBuf.array(),
headerBuf.arrayOffset(), onDiskBlock, 0, hdrSize);
} else {
headerBuf = ByteBuffer.wrap(onDiskBlock, 0, hdrSize);
}
// We know the total on-disk size but not the uncompressed size. Parse the header.
try {
// TODO: FIX!!! Expensive parse just to get a length
b = new HFileBlock(headerBuf, fileContext.isUseHBaseChecksum());
} catch (IOException ex) {
// Seen in load testing. Provide comprehensive debug info.
throw new IOException("Failed to read compressed block at "
+ offset
+ ", onDiskSizeWithoutHeader="
+ onDiskSizeWithHeader
+ ", preReadHeaderSize="
+ hdrSize
+ ", header.length="
+ prefetchedHeader.header.length
+ ", header bytes: "
+ Bytes.toStringBinary(prefetchedHeader.header, 0,
hdrSize), ex);
}
// if the caller specifies a onDiskSizeWithHeader, validate it.
int onDiskSizeWithoutHeader = onDiskSizeWithHeader - hdrSize;
assert onDiskSizeWithoutHeader >= 0;
b.validateOnDiskSizeWithoutHeader(onDiskSizeWithoutHeader);
} else {
// Check headerBuf to see if we have read this block's header as part of
// reading the previous block. This is an optimization of peeking into
// the next block's header (e.g.this block's header) when reading the
// previous block. This is the faster and more preferable case. If the
// header is already there, don't read the header again.
// Unfortunately, we still have to do a separate read operation to
// read the header.
if (headerBuf == null) {
// From the header, determine the on-disk size of the given hfile
// block, and read the remaining data, thereby incurring two read
// operations. This might happen when we are doing the first read
// in a series of reads or a random read, and we don't have access
// to the block index. This is costly and should happen very rarely.
headerBuf = ByteBuffer.allocate(hdrSize);
// headerBuf is HBB
readAtOffset(is, headerBuf.array(), headerBuf.arrayOffset(),
hdrSize, false, offset, pread);
}
// TODO: FIX!!! Expensive parse just to get a length
b = new HFileBlock(headerBuf, fileContext.isUseHBaseChecksum());
onDiskBlock = new byte[b.getOnDiskSizeWithHeader() + hdrSize];
// headerBuf is HBB
System.arraycopy(headerBuf.array(), headerBuf.arrayOffset(), onDiskBlock, 0, hdrSize);
nextBlockOnDiskSize =
readAtOffset(is, onDiskBlock, hdrSize, b.getOnDiskSizeWithHeader()
- hdrSize, true, offset + hdrSize, pread);
onDiskSizeWithHeader = b.onDiskSizeWithoutHeader + hdrSize;
}
if (!fileContext.isCompressedOrEncrypted()) {
b.assumeUncompressed();
}
if (verifyChecksum && !validateBlockChecksum(b, onDiskBlock, hdrSize)) {
return null; // checksum mismatch
}
// The onDiskBlock will become the headerAndDataBuffer for this block.
// If nextBlockOnDiskSizeWithHeader is not zero, the onDiskBlock already
// contains the header of next block, so no need to set next
// block's header in it.
b = new HFileBlock(ByteBuffer.wrap(onDiskBlock, 0, onDiskSizeWithHeader),
this.fileContext.isUseHBaseChecksum());
b.nextBlockOnDiskSizeWithHeader = nextBlockOnDiskSize;
// Set prefetched header
if (b.hasNextBlockHeader()) {
prefetchedHeader.offset = offset + b.getOnDiskSizeWithHeader();
System.arraycopy(onDiskBlock, onDiskSizeWithHeader, prefetchedHeader.header, 0, hdrSize);
}
b.offset = offset;
b.fileContext.setIncludesTags(this.fileContext.isIncludesTags());
b.fileContext.setIncludesMvcc(this.fileContext.isIncludesMvcc());
return b;
}
void setIncludesMemstoreTS(boolean includesMemstoreTS) {
this.fileContext.setIncludesMvcc(includesMemstoreTS);
}
void setDataBlockEncoder(HFileDataBlockEncoder encoder) {
encodedBlockDecodingCtx = encoder.newDataBlockDecodingContext(this.fileContext);
}
@Override
public HFileBlockDecodingContext getBlockDecodingContext() {
return this.encodedBlockDecodingCtx;
}
@Override
public HFileBlockDecodingContext getDefaultBlockDecodingContext() {
return this.defaultDecodingCtx;
}
/**
* Generates the checksum for the header as well as the data and
* then validates that it matches the value stored in the header.
* If there is a checksum mismatch, then return false. Otherwise
* return true.
*/
protected boolean validateBlockChecksum(HFileBlock block, byte[] data, int hdrSize)
throws IOException {
return ChecksumUtil.validateBlockChecksum(path, block, data, hdrSize);
}
@Override
public void closeStreams() throws IOException {
streamWrapper.close();
}
@Override
public String toString() {
return "hfs=" + hfs + ", path=" + path + ", fileContext=" + fileContext;
}
}
@Override
public int getSerializedLength() {
if (buf != null) {
// include extra bytes for the next header when it's available.
int extraSpace = hasNextBlockHeader() ? headerSize() : 0;
return this.buf.limit() + extraSpace + HFileBlock.EXTRA_SERIALIZATION_SPACE;
}
return 0;
}
@Override
public void serialize(ByteBuffer destination) {
ByteBufferUtils.copyFromBufferToBuffer(destination, this.buf, 0, getSerializedLength()
- EXTRA_SERIALIZATION_SPACE);
serializeExtraInfo(destination);
}
public void serializeExtraInfo(ByteBuffer destination) {
destination.put(this.fileContext.isUseHBaseChecksum() ? (byte) 1 : (byte) 0);
destination.putLong(this.offset);
destination.putInt(this.nextBlockOnDiskSizeWithHeader);
destination.rewind();
}
@Override
public CacheableDeserializer getDeserializer() {
return HFileBlock.blockDeserializer;
}
@Override
public boolean equals(Object comparison) {
if (this == comparison) {
return true;
}
if (comparison == null) {
return false;
}
if (comparison.getClass() != this.getClass()) {
return false;
}
HFileBlock castedComparison = (HFileBlock) comparison;
if (castedComparison.blockType != this.blockType) {
return false;
}
if (castedComparison.nextBlockOnDiskSizeWithHeader != this.nextBlockOnDiskSizeWithHeader) {
return false;
}
if (castedComparison.offset != this.offset) {
return false;
}
if (castedComparison.onDiskSizeWithoutHeader != this.onDiskSizeWithoutHeader) {
return false;
}
if (castedComparison.prevBlockOffset != this.prevBlockOffset) {
return false;
}
if (castedComparison.uncompressedSizeWithoutHeader != this.uncompressedSizeWithoutHeader) {
return false;
}
if (ByteBufferUtils.compareTo(this.buf, 0, this.buf.limit(), castedComparison.buf, 0,
castedComparison.buf.limit()) != 0) {
return false;
}
return true;
}
public DataBlockEncoding getDataBlockEncoding() {
if (blockType == BlockType.ENCODED_DATA) {
return DataBlockEncoding.getEncodingById(getDataBlockEncodingId());
}
return DataBlockEncoding.NONE;
}
byte getChecksumType() {
return this.fileContext.getChecksumType().getCode();
}
int getBytesPerChecksum() {
return this.fileContext.getBytesPerChecksum();
}
/** @return the size of data on disk + header. Excludes checksum. */
int getOnDiskDataSizeWithHeader() {
return this.onDiskDataSizeWithHeader;
}
/**
* Calcuate the number of bytes required to store all the checksums
* for this block. Each checksum value is a 4 byte integer.
*/
int totalChecksumBytes() {
// If the hfile block has minorVersion 0, then there are no checksum
// data to validate. Similarly, a zero value in this.bytesPerChecksum
// indicates that cached blocks do not have checksum data because
// checksums were already validated when the block was read from disk.
if (!fileContext.isUseHBaseChecksum() || this.fileContext.getBytesPerChecksum() == 0) {
return 0;
}
return (int) ChecksumUtil.numBytes(onDiskDataSizeWithHeader,
this.fileContext.getBytesPerChecksum());
}
/**
* Returns the size of this block header.
*/
public int headerSize() {
return headerSize(this.fileContext.isUseHBaseChecksum());
}
/**
* Maps a minor version to the size of the header.
*/
public static int headerSize(boolean usesHBaseChecksum) {
if (usesHBaseChecksum) {
return HConstants.HFILEBLOCK_HEADER_SIZE;
}
return HConstants.HFILEBLOCK_HEADER_SIZE_NO_CHECKSUM;
}
/**
* Return the appropriate DUMMY_HEADER for the minor version
*/
public byte[] getDummyHeaderForVersion() {
return getDummyHeaderForVersion(this.fileContext.isUseHBaseChecksum());
}
/**
* Return the appropriate DUMMY_HEADER for the minor version
*/
static private byte[] getDummyHeaderForVersion(boolean usesHBaseChecksum) {
if (usesHBaseChecksum) {
return HConstants.HFILEBLOCK_DUMMY_HEADER;
}
return DUMMY_HEADER_NO_CHECKSUM;
}
/**
* @return the HFileContext used to create this HFileBlock. Not necessary the
* fileContext for the file from which this block's data was originally read.
*/
public HFileContext getHFileContext() {
return this.fileContext;
}
/**
* Convert the contents of the block header into a human readable string.
* This is mostly helpful for debugging. This assumes that the block
* has minor version > 0.
*/
static String toStringHeader(ByteBuffer buf) throws IOException {
byte[] magicBuf = new byte[Math.min(buf.limit() - buf.position(), BlockType.MAGIC_LENGTH)];
buf.get(magicBuf);
BlockType bt = BlockType.parse(magicBuf, 0, BlockType.MAGIC_LENGTH);
int compressedBlockSizeNoHeader = buf.getInt();
int uncompressedBlockSizeNoHeader = buf.getInt();
long prevBlockOffset = buf.getLong();
byte cksumtype = buf.get();
long bytesPerChecksum = buf.getInt();
long onDiskDataSizeWithHeader = buf.getInt();
return " Header dump: magic: " + Bytes.toString(magicBuf) +
" blockType " + bt +
" compressedBlockSizeNoHeader " +
compressedBlockSizeNoHeader +
" uncompressedBlockSizeNoHeader " +
uncompressedBlockSizeNoHeader +
" prevBlockOffset " + prevBlockOffset +
" checksumType " + ChecksumType.codeToType(cksumtype) +
" bytesPerChecksum " + bytesPerChecksum +
" onDiskDataSizeWithHeader " + onDiskDataSizeWithHeader;
}
}