All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.hbase.mapreduce.TableSnapshotInputFormat Maven / Gradle / Ivy

There is a newer version: 3.0.0-beta-1
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.hbase.mapreduce;

import com.google.common.annotations.VisibleForTesting;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HRegionInfo;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.classification.InterfaceAudience;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.client.metrics.ScanMetrics;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.InputFormat;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.List;

/**
 * TableSnapshotInputFormat allows a MapReduce job to run over a table snapshot. The job
 * bypasses HBase servers, and directly accesses the underlying files (hfile, recovered edits,
 * wals, etc) directly to provide maximum performance. The snapshot is not required to be
 * restored to the live cluster or cloned. This also allows to run the mapreduce job from an
 * online or offline hbase cluster. The snapshot files can be exported by using the
 * {@link org.apache.hadoop.hbase.snapshot.ExportSnapshot} tool, to a pure-hdfs cluster, 
 * and this InputFormat can be used to run the mapreduce job directly over the snapshot files. 
 * The snapshot should not be deleted while there are jobs reading from snapshot files.
 * 

* Usage is similar to TableInputFormat, and * {@link TableMapReduceUtil#initTableSnapshotMapperJob(String, Scan, Class, Class, Class, Job, * boolean, Path)} * can be used to configure the job. *

{@code
 * Job job = new Job(conf);
 * Scan scan = new Scan();
 * TableMapReduceUtil.initTableSnapshotMapperJob(snapshotName,
 *      scan, MyTableMapper.class, MyMapKeyOutput.class,
 *      MyMapOutputValueWritable.class, job, true);
 * }
 * 
*

* Internally, this input format restores the snapshot into the given tmp directory. Similar to * {@link TableInputFormat} an InputSplit is created per region. The region is opened for reading * from each RecordReader. An internal RegionScanner is used to execute the * {@link org.apache.hadoop.hbase.CellScanner} obtained from the user. *

* HBase owns all the data and snapshot files on the filesystem. Only the 'hbase' user can read from * snapshot files and data files. * To read from snapshot files directly from the file system, the user who is running the MR job * must have sufficient permissions to access snapshot and reference files. * This means that to run mapreduce over snapshot files, the MR job has to be run as the HBase * user or the user must have group or other privileges in the filesystem (See HBASE-8369). * Note that, given other users access to read from snapshot/data files will completely circumvent * the access control enforced by HBase. * @see org.apache.hadoop.hbase.client.TableSnapshotScanner */ @InterfaceAudience.Public public class TableSnapshotInputFormat extends InputFormat { public static class TableSnapshotRegionSplit extends InputSplit implements Writable { private TableSnapshotInputFormatImpl.InputSplit delegate; // constructor for mapreduce framework / Writable public TableSnapshotRegionSplit() { this.delegate = new TableSnapshotInputFormatImpl.InputSplit(); } public TableSnapshotRegionSplit(TableSnapshotInputFormatImpl.InputSplit delegate) { this.delegate = delegate; } public TableSnapshotRegionSplit(HTableDescriptor htd, HRegionInfo regionInfo, List locations, Scan scan, Path restoreDir) { this.delegate = new TableSnapshotInputFormatImpl.InputSplit(htd, regionInfo, locations, scan, restoreDir); } @Override public long getLength() throws IOException, InterruptedException { return delegate.getLength(); } @Override public String[] getLocations() throws IOException, InterruptedException { return delegate.getLocations(); } @Override public void write(DataOutput out) throws IOException { delegate.write(out); } @Override public void readFields(DataInput in) throws IOException { delegate.readFields(in); } public HRegionInfo getRegionInfo() { return delegate.getRegionInfo(); } } @VisibleForTesting static class TableSnapshotRegionRecordReader extends RecordReader { private TableSnapshotInputFormatImpl.RecordReader delegate = new TableSnapshotInputFormatImpl.RecordReader(); private TaskAttemptContext context; private Method getCounter; @Override public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { this.context = context; getCounter = TableRecordReaderImpl.retrieveGetCounterWithStringsParams(context); delegate.initialize( ((TableSnapshotRegionSplit) split).delegate, context.getConfiguration()); } @Override public boolean nextKeyValue() throws IOException, InterruptedException { boolean result = delegate.nextKeyValue(); if (result) { ScanMetrics scanMetrics = delegate.getScanner().getScanMetrics(); if (scanMetrics != null && context != null) { TableRecordReaderImpl.updateCounters(scanMetrics, 0, getCounter, context, 0); } } return result; } @Override public ImmutableBytesWritable getCurrentKey() throws IOException, InterruptedException { return delegate.getCurrentKey(); } @Override public Result getCurrentValue() throws IOException, InterruptedException { return delegate.getCurrentValue(); } @Override public float getProgress() throws IOException, InterruptedException { return delegate.getProgress(); } @Override public void close() throws IOException { delegate.close(); } } @Override public RecordReader createRecordReader( InputSplit split, TaskAttemptContext context) throws IOException { return new TableSnapshotRegionRecordReader(); } @Override public List getSplits(JobContext job) throws IOException, InterruptedException { List results = new ArrayList<>(); for (TableSnapshotInputFormatImpl.InputSplit split : TableSnapshotInputFormatImpl.getSplits(job.getConfiguration())) { results.add(new TableSnapshotRegionSplit(split)); } return results; } /** * Configures the job to use TableSnapshotInputFormat to read from a snapshot. * @param job the job to configure * @param snapshotName the name of the snapshot to read from * @param restoreDir a temporary directory to restore the snapshot into. Current user should * have write permissions to this directory, and this should not be a subdirectory of rootdir. * After the job is finished, restoreDir can be deleted. * @throws IOException if an error occurs */ public static void setInput(Job job, String snapshotName, Path restoreDir) throws IOException { TableSnapshotInputFormatImpl.setInput(job.getConfiguration(), snapshotName, restoreDir); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy