All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.hbase.io.hfile.HFileBlock Maven / Gradle / Ivy

There is a newer version: 3.0.0-beta-1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.hadoop.hbase.io.hfile;

import java.io.DataInputStream;
import java.io.DataOutput;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.HConstants;
import org.apache.yetus.audience.InterfaceAudience;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.apache.hadoop.hbase.fs.HFileSystem;
import org.apache.hadoop.hbase.io.ByteArrayOutputStream;
import org.apache.hadoop.hbase.io.ByteBuffInputStream;
import org.apache.hadoop.hbase.io.ByteBufferWriterDataOutputStream;
import org.apache.hadoop.hbase.io.FSDataInputStreamWrapper;
import org.apache.hadoop.hbase.io.encoding.DataBlockEncoding;
import org.apache.hadoop.hbase.io.encoding.HFileBlockDecodingContext;
import org.apache.hadoop.hbase.io.encoding.HFileBlockDefaultDecodingContext;
import org.apache.hadoop.hbase.io.encoding.HFileBlockDefaultEncodingContext;
import org.apache.hadoop.hbase.io.encoding.HFileBlockEncodingContext;
import org.apache.hadoop.hbase.nio.ByteBuff;
import org.apache.hadoop.hbase.nio.MultiByteBuff;
import org.apache.hadoop.hbase.nio.SingleByteBuff;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.hbase.util.ChecksumType;
import org.apache.hadoop.hbase.util.ClassSize;
import org.apache.hadoop.io.IOUtils;

import org.apache.hbase.thirdparty.com.google.common.annotations.VisibleForTesting;
import org.apache.hbase.thirdparty.com.google.common.base.Preconditions;

/**
 * Cacheable Blocks of an {@link HFile} version 2 file.
 * Version 2 was introduced in hbase-0.92.0.
 *
 * 

Version 1 was the original file block. Version 2 was introduced when we changed the hbase file * format to support multi-level block indexes and compound bloom filters (HBASE-3857). Support * for Version 1 was removed in hbase-1.3.0. * *

HFileBlock: Version 2

* In version 2, a block is structured as follows: *
    *
  • Header: See Writer#putHeader() for where header is written; header total size is * HFILEBLOCK_HEADER_SIZE *
      *
    • 0. blockType: Magic record identifying the {@link BlockType} (8 bytes): * e.g. DATABLK* *
    • 1. onDiskSizeWithoutHeader: Compressed -- a.k.a 'on disk' -- block size, excluding header, * but including tailing checksum bytes (4 bytes) *
    • 2. uncompressedSizeWithoutHeader: Uncompressed block size, excluding header, and excluding * checksum bytes (4 bytes) *
    • 3. prevBlockOffset: The offset of the previous block of the same type (8 bytes). This is * used to navigate to the previous block without having to go to the block index *
    • 4: For minorVersions >=1, the ordinal describing checksum type (1 byte) *
    • 5: For minorVersions >=1, the number of data bytes/checksum chunk (4 bytes) *
    • 6: onDiskDataSizeWithHeader: For minorVersions >=1, the size of data 'on disk', including * header, excluding checksums (4 bytes) *
    *
  • *
  • Raw/Compressed/Encrypted/Encoded data: The compression * algorithm is the same for all the blocks in an {@link HFile}. If compression is NONE, this is * just raw, serialized Cells. *
  • Tail: For minorVersions >=1, a series of 4 byte checksums, one each for * the number of bytes specified by bytesPerChecksum. *
* *

Caching

* Caches cache whole blocks with trailing checksums if any. We then tag on some metadata, the * content of BLOCK_METADATA_SPACE which will be flag on if we are doing 'hbase' * checksums and then the offset into the file which is needed when we re-make a cache key * when we return the block to the cache as 'done'. See {@link Cacheable#serialize(ByteBuffer)} and * {@link Cacheable#getDeserializer()}. * *

TODO: Should we cache the checksums? Down in Writer#getBlockForCaching(CacheConfig) where * we make a block to cache-on-write, there is an attempt at turning off checksums. This is not the * only place we get blocks to cache. We also will cache the raw return from an hdfs read. In this * case, the checksums may be present. If the cache is backed by something that doesn't do ECC, * say an SSD, we might want to preserve checksums. For now this is open question. *

TODO: Over in BucketCache, we save a block allocation by doing a custom serialization. * Be sure to change it if serialization changes in here. Could we add a method here that takes an * IOEngine and that then serializes to it rather than expose our internals over in BucketCache? * IOEngine is in the bucket subpackage. Pull it up? Then this class knows about bucketcache. Ugh. */ @InterfaceAudience.Private public class HFileBlock implements Cacheable { private static final Logger LOG = LoggerFactory.getLogger(HFileBlock.class); // Block Header fields. // TODO: encapsulate Header related logic in this inner class. static class Header { // Format of header is: // 8 bytes - block magic // 4 bytes int - onDiskSizeWithoutHeader // 4 bytes int - uncompressedSizeWithoutHeader // 8 bytes long - prevBlockOffset // The following 3 are only present if header contains checksum information // 1 byte - checksum type // 4 byte int - bytes per checksum // 4 byte int - onDiskDataSizeWithHeader static int BLOCK_MAGIC_INDEX = 0; static int ON_DISK_SIZE_WITHOUT_HEADER_INDEX = 8; static int UNCOMPRESSED_SIZE_WITHOUT_HEADER_INDEX = 12; static int PREV_BLOCK_OFFSET_INDEX = 16; static int CHECKSUM_TYPE_INDEX = 24; static int BYTES_PER_CHECKSUM_INDEX = 25; static int ON_DISK_DATA_SIZE_WITH_HEADER_INDEX = 29; } /** Type of block. Header field 0. */ private BlockType blockType; /** * Size on disk excluding header, including checksum. Header field 1. * @see Writer#putHeader(byte[], int, int, int, int) */ private int onDiskSizeWithoutHeader; /** * Size of pure data. Does not include header or checksums. Header field 2. * @see Writer#putHeader(byte[], int, int, int, int) */ private int uncompressedSizeWithoutHeader; /** * The offset of the previous block on disk. Header field 3. * @see Writer#putHeader(byte[], int, int, int, int) */ private long prevBlockOffset; /** * Size on disk of header + data. Excludes checksum. Header field 6, * OR calculated from {@link #onDiskSizeWithoutHeader} when using HDFS checksum. * @see Writer#putHeader(byte[], int, int, int, int) */ private int onDiskDataSizeWithHeader; // End of Block Header fields. /** * The in-memory representation of the hfile block. Can be on or offheap. Can be backed by * a single ByteBuffer or by many. Make no assumptions. * *

Be careful reading from this buf. Duplicate and work on the duplicate or if * not, be sure to reset position and limit else trouble down the road. * *

TODO: Make this read-only once made. * *

We are using the ByteBuff type. ByteBuffer is not extensible yet we need to be able to have * a ByteBuffer-like API across multiple ByteBuffers reading from a cache such as BucketCache. * So, we have this ByteBuff type. Unfortunately, it is spread all about HFileBlock. Would be * good if could be confined to cache-use only but hard-to-do. */ private ByteBuff buf; /** Meta data that holds meta information on the hfileblock. */ private HFileContext fileContext; /** * The offset of this block in the file. Populated by the reader for * convenience of access. This offset is not part of the block header. */ private long offset = UNSET; private MemoryType memType = MemoryType.EXCLUSIVE; /** * The on-disk size of the next block, including the header and checksums if present. * UNSET if unknown. * * Blocks try to carry the size of the next block to read in this data member. Usually * we get block sizes from the hfile index but sometimes the index is not available: * e.g. when we read the indexes themselves (indexes are stored in blocks, we do not * have an index for the indexes). Saves seeks especially around file open when * there is a flurry of reading in hfile metadata. */ private int nextBlockOnDiskSize = UNSET; /** * On a checksum failure, do these many succeeding read requests using hdfs checksums before * auto-reenabling hbase checksum verification. */ static final int CHECKSUM_VERIFICATION_NUM_IO_THRESHOLD = 3; private static int UNSET = -1; public static final boolean FILL_HEADER = true; public static final boolean DONT_FILL_HEADER = false; // How to get the estimate correctly? if it is a singleBB? public static final int MULTI_BYTE_BUFFER_HEAP_SIZE = (int)ClassSize.estimateBase(MultiByteBuff.class, false); /** * Space for metadata on a block that gets stored along with the block when we cache it. * There are a few bytes stuck on the end of the HFileBlock that we pull in from HDFS. * 8 bytes are for the offset of this block (long) in the file. Offset is important because is is * used when we remake the CacheKey when we return block to the cache when done. There is also * a flag on whether checksumming is being done by hbase or not. See class comment for note on * uncertain state of checksumming of blocks that come out of cache (should we or should we not?). * Finally there are 4 bytes to hold the length of the next block which can save a seek on * occasion if available. * (This EXTRA info came in with original commit of the bucketcache, HBASE-7404. It was * formerly known as EXTRA_SERIALIZATION_SPACE). */ static final int BLOCK_METADATA_SPACE = Bytes.SIZEOF_BYTE + Bytes.SIZEOF_LONG + Bytes.SIZEOF_INT; /** * Each checksum value is an integer that can be stored in 4 bytes. */ static final int CHECKSUM_SIZE = Bytes.SIZEOF_INT; static final byte[] DUMMY_HEADER_NO_CHECKSUM = new byte[HConstants.HFILEBLOCK_HEADER_SIZE_NO_CHECKSUM]; /** * Used deserializing blocks from Cache. * * * ++++++++++++++ * + HFileBlock + * ++++++++++++++ * + Checksums + <= Optional * ++++++++++++++ * + Metadata! + <= See note on BLOCK_METADATA_SPACE above. * ++++++++++++++ * * @see #serialize(ByteBuffer) */ static final CacheableDeserializer BLOCK_DESERIALIZER = new CacheableDeserializer() { public HFileBlock deserialize(ByteBuff buf, boolean reuse, MemoryType memType) throws IOException { // The buf has the file block followed by block metadata. // Set limit to just before the BLOCK_METADATA_SPACE then rewind. buf.limit(buf.limit() - BLOCK_METADATA_SPACE).rewind(); // Get a new buffer to pass the HFileBlock for it to 'own'. ByteBuff newByteBuff; if (reuse) { newByteBuff = buf.slice(); } else { int len = buf.limit(); newByteBuff = new SingleByteBuff(ByteBuffer.allocate(len)); newByteBuff.put(0, buf, buf.position(), len); } // Read out the BLOCK_METADATA_SPACE content and shove into our HFileBlock. buf.position(buf.limit()); buf.limit(buf.limit() + HFileBlock.BLOCK_METADATA_SPACE); boolean usesChecksum = buf.get() == (byte)1; long offset = buf.getLong(); int nextBlockOnDiskSize = buf.getInt(); HFileBlock hFileBlock = new HFileBlock(newByteBuff, usesChecksum, memType, offset, nextBlockOnDiskSize, null); return hFileBlock; } @Override public int getDeserialiserIdentifier() { return DESERIALIZER_IDENTIFIER; } @Override public HFileBlock deserialize(ByteBuff b) throws IOException { // Used only in tests return deserialize(b, false, MemoryType.EXCLUSIVE); } }; private static final int DESERIALIZER_IDENTIFIER; static { DESERIALIZER_IDENTIFIER = CacheableDeserializerIdManager.registerDeserializer(BLOCK_DESERIALIZER); } /** * Copy constructor. Creates a shallow copy of {@code that}'s buffer. */ private HFileBlock(HFileBlock that) { this(that, false); } /** * Copy constructor. Creates a shallow/deep copy of {@code that}'s buffer as per the boolean * param. */ private HFileBlock(HFileBlock that, boolean bufCopy) { init(that.blockType, that.onDiskSizeWithoutHeader, that.uncompressedSizeWithoutHeader, that.prevBlockOffset, that.offset, that.onDiskDataSizeWithHeader, that.nextBlockOnDiskSize, that.fileContext); if (bufCopy) { this.buf = new SingleByteBuff(ByteBuffer.wrap(that.buf.toBytes(0, that.buf.limit()))); } else { this.buf = that.buf.duplicate(); } } /** * Creates a new {@link HFile} block from the given fields. This constructor * is used only while writing blocks and caching, * and is sitting in a byte buffer and we want to stuff the block into cache. * See {@link Writer#getBlockForCaching(CacheConfig)}. * *

TODO: The caller presumes no checksumming * required of this block instance since going into cache; checksum already verified on * underlying block data pulled in from filesystem. Is that correct? What if cache is SSD? * * @param blockType the type of this block, see {@link BlockType} * @param onDiskSizeWithoutHeader see {@link #onDiskSizeWithoutHeader} * @param uncompressedSizeWithoutHeader see {@link #uncompressedSizeWithoutHeader} * @param prevBlockOffset see {@link #prevBlockOffset} * @param b block header ({@link HConstants#HFILEBLOCK_HEADER_SIZE} bytes) * @param fillHeader when true, write the first 4 header fields into passed buffer. * @param offset the file offset the block was read from * @param onDiskDataSizeWithHeader see {@link #onDiskDataSizeWithHeader} * @param fileContext HFile meta data */ HFileBlock(BlockType blockType, int onDiskSizeWithoutHeader, int uncompressedSizeWithoutHeader, long prevBlockOffset, ByteBuffer b, boolean fillHeader, long offset, final int nextBlockOnDiskSize, int onDiskDataSizeWithHeader, HFileContext fileContext) { init(blockType, onDiskSizeWithoutHeader, uncompressedSizeWithoutHeader, prevBlockOffset, offset, onDiskDataSizeWithHeader, nextBlockOnDiskSize, fileContext); this.buf = new SingleByteBuff(b); if (fillHeader) { overwriteHeader(); } this.buf.rewind(); } /** * Creates a block from an existing buffer starting with a header. Rewinds * and takes ownership of the buffer. By definition of rewind, ignores the * buffer position, but if you slice the buffer beforehand, it will rewind * to that point. * @param buf Has header, content, and trailing checksums if present. */ HFileBlock(ByteBuff buf, boolean usesHBaseChecksum, MemoryType memType, final long offset, final int nextBlockOnDiskSize, HFileContext fileContext) throws IOException { buf.rewind(); final BlockType blockType = BlockType.read(buf); final int onDiskSizeWithoutHeader = buf.getInt(Header.ON_DISK_SIZE_WITHOUT_HEADER_INDEX); final int uncompressedSizeWithoutHeader = buf.getInt(Header.UNCOMPRESSED_SIZE_WITHOUT_HEADER_INDEX); final long prevBlockOffset = buf.getLong(Header.PREV_BLOCK_OFFSET_INDEX); // This constructor is called when we deserialize a block from cache and when we read a block in // from the fs. fileCache is null when deserialized from cache so need to make up one. HFileContextBuilder fileContextBuilder = fileContext != null? new HFileContextBuilder(fileContext): new HFileContextBuilder(); fileContextBuilder.withHBaseCheckSum(usesHBaseChecksum); int onDiskDataSizeWithHeader; if (usesHBaseChecksum) { byte checksumType = buf.get(Header.CHECKSUM_TYPE_INDEX); int bytesPerChecksum = buf.getInt(Header.BYTES_PER_CHECKSUM_INDEX); onDiskDataSizeWithHeader = buf.getInt(Header.ON_DISK_DATA_SIZE_WITH_HEADER_INDEX); // Use the checksum type and bytes per checksum from header, not from filecontext. fileContextBuilder.withChecksumType(ChecksumType.codeToType(checksumType)); fileContextBuilder.withBytesPerCheckSum(bytesPerChecksum); } else { fileContextBuilder.withChecksumType(ChecksumType.NULL); fileContextBuilder.withBytesPerCheckSum(0); // Need to fix onDiskDataSizeWithHeader; there are not checksums after-block-data onDiskDataSizeWithHeader = onDiskSizeWithoutHeader + headerSize(usesHBaseChecksum); } fileContext = fileContextBuilder.build(); assert usesHBaseChecksum == fileContext.isUseHBaseChecksum(); init(blockType, onDiskSizeWithoutHeader, uncompressedSizeWithoutHeader, prevBlockOffset, offset, onDiskDataSizeWithHeader, nextBlockOnDiskSize, fileContext); this.memType = memType; this.offset = offset; this.buf = buf; this.buf.rewind(); } /** * Called from constructors. */ private void init(BlockType blockType, int onDiskSizeWithoutHeader, int uncompressedSizeWithoutHeader, long prevBlockOffset, long offset, int onDiskDataSizeWithHeader, final int nextBlockOnDiskSize, HFileContext fileContext) { this.blockType = blockType; this.onDiskSizeWithoutHeader = onDiskSizeWithoutHeader; this.uncompressedSizeWithoutHeader = uncompressedSizeWithoutHeader; this.prevBlockOffset = prevBlockOffset; this.offset = offset; this.onDiskDataSizeWithHeader = onDiskDataSizeWithHeader; this.nextBlockOnDiskSize = nextBlockOnDiskSize; this.fileContext = fileContext; } /** * Parse total on disk size including header and checksum. * @param headerBuf Header ByteBuffer. Presumed exact size of header. * @param verifyChecksum true if checksum verification is in use. * @return Size of the block with header included. */ private static int getOnDiskSizeWithHeader(final ByteBuffer headerBuf, boolean verifyChecksum) { return headerBuf.getInt(Header.ON_DISK_SIZE_WITHOUT_HEADER_INDEX) + headerSize(verifyChecksum); } /** * @return the on-disk size of the next block (including the header size and any checksums if * present) read by peeking into the next block's header; use as a hint when doing * a read of the next block when scanning or running over a file. */ int getNextBlockOnDiskSize() { return nextBlockOnDiskSize; } @Override public BlockType getBlockType() { return blockType; } /** @return get data block encoding id that was used to encode this block */ short getDataBlockEncodingId() { if (blockType != BlockType.ENCODED_DATA) { throw new IllegalArgumentException("Querying encoder ID of a block " + "of type other than " + BlockType.ENCODED_DATA + ": " + blockType); } return buf.getShort(headerSize()); } /** * @return the on-disk size of header + data part + checksum. */ public int getOnDiskSizeWithHeader() { return onDiskSizeWithoutHeader + headerSize(); } /** * @return the on-disk size of the data part + checksum (header excluded). */ int getOnDiskSizeWithoutHeader() { return onDiskSizeWithoutHeader; } /** * @return the uncompressed size of data part (header and checksum excluded). */ int getUncompressedSizeWithoutHeader() { return uncompressedSizeWithoutHeader; } /** * @return the offset of the previous block of the same type in the file, or * -1 if unknown */ long getPrevBlockOffset() { return prevBlockOffset; } /** * Rewinds {@code buf} and writes first 4 header fields. {@code buf} position * is modified as side-effect. */ private void overwriteHeader() { buf.rewind(); blockType.write(buf); buf.putInt(onDiskSizeWithoutHeader); buf.putInt(uncompressedSizeWithoutHeader); buf.putLong(prevBlockOffset); if (this.fileContext.isUseHBaseChecksum()) { buf.put(fileContext.getChecksumType().getCode()); buf.putInt(fileContext.getBytesPerChecksum()); buf.putInt(onDiskDataSizeWithHeader); } } /** * Returns a buffer that does not include the header or checksum. * * @return the buffer with header skipped and checksum omitted. */ public ByteBuff getBufferWithoutHeader() { ByteBuff dup = getBufferReadOnly(); // Now set it up so Buffer spans content only -- no header or no checksums. return dup.position(headerSize()).limit(buf.limit() - totalChecksumBytes()).slice(); } /** * Returns a read-only duplicate of the buffer this block stores internally ready to be read. * Clients must not modify the buffer object though they may set position and limit on the * returned buffer since we pass back a duplicate. This method has to be public because it is used * in {@link CompoundBloomFilter} to avoid object creation on every Bloom * filter lookup, but has to be used with caution. Buffer holds header, block content, * and any follow-on checksums if present. * * @return the buffer of this block for read-only operations */ public ByteBuff getBufferReadOnly() { // TODO: ByteBuf does not support asReadOnlyBuffer(). Fix. ByteBuff dup = this.buf.duplicate(); assert dup.position() == 0; return dup; } @VisibleForTesting private void sanityCheckAssertion(long valueFromBuf, long valueFromField, String fieldName) throws IOException { if (valueFromBuf != valueFromField) { throw new AssertionError(fieldName + " in the buffer (" + valueFromBuf + ") is different from that in the field (" + valueFromField + ")"); } } @VisibleForTesting private void sanityCheckAssertion(BlockType valueFromBuf, BlockType valueFromField) throws IOException { if (valueFromBuf != valueFromField) { throw new IOException("Block type stored in the buffer: " + valueFromBuf + ", block type field: " + valueFromField); } } /** * Checks if the block is internally consistent, i.e. the first * {@link HConstants#HFILEBLOCK_HEADER_SIZE} bytes of the buffer contain a * valid header consistent with the fields. Assumes a packed block structure. * This function is primary for testing and debugging, and is not * thread-safe, because it alters the internal buffer pointer. * Used by tests only. */ @VisibleForTesting void sanityCheck() throws IOException { // Duplicate so no side-effects ByteBuff dup = this.buf.duplicate().rewind(); sanityCheckAssertion(BlockType.read(dup), blockType); sanityCheckAssertion(dup.getInt(), onDiskSizeWithoutHeader, "onDiskSizeWithoutHeader"); sanityCheckAssertion(dup.getInt(), uncompressedSizeWithoutHeader, "uncompressedSizeWithoutHeader"); sanityCheckAssertion(dup.getLong(), prevBlockOffset, "prevBlockOffset"); if (this.fileContext.isUseHBaseChecksum()) { sanityCheckAssertion(dup.get(), this.fileContext.getChecksumType().getCode(), "checksumType"); sanityCheckAssertion(dup.getInt(), this.fileContext.getBytesPerChecksum(), "bytesPerChecksum"); sanityCheckAssertion(dup.getInt(), onDiskDataSizeWithHeader, "onDiskDataSizeWithHeader"); } int cksumBytes = totalChecksumBytes(); int expectedBufLimit = onDiskDataSizeWithHeader + cksumBytes; if (dup.limit() != expectedBufLimit) { throw new AssertionError("Expected limit " + expectedBufLimit + ", got " + dup.limit()); } // We might optionally allocate HFILEBLOCK_HEADER_SIZE more bytes to read the next // block's header, so there are two sensible values for buffer capacity. int hdrSize = headerSize(); if (dup.capacity() != expectedBufLimit && dup.capacity() != expectedBufLimit + hdrSize) { throw new AssertionError("Invalid buffer capacity: " + dup.capacity() + ", expected " + expectedBufLimit + " or " + (expectedBufLimit + hdrSize)); } } @Override public String toString() { StringBuilder sb = new StringBuilder() .append("[") .append("blockType=").append(blockType) .append(", fileOffset=").append(offset) .append(", headerSize=").append(headerSize()) .append(", onDiskSizeWithoutHeader=").append(onDiskSizeWithoutHeader) .append(", uncompressedSizeWithoutHeader=").append(uncompressedSizeWithoutHeader) .append(", prevBlockOffset=").append(prevBlockOffset) .append(", isUseHBaseChecksum=").append(fileContext.isUseHBaseChecksum()); if (fileContext.isUseHBaseChecksum()) { sb.append(", checksumType=").append(ChecksumType.codeToType(this.buf.get(24))) .append(", bytesPerChecksum=").append(this.buf.getInt(24 + 1)) .append(", onDiskDataSizeWithHeader=").append(onDiskDataSizeWithHeader); } else { sb.append(", onDiskDataSizeWithHeader=").append(onDiskDataSizeWithHeader) .append("(").append(onDiskSizeWithoutHeader) .append("+").append(HConstants.HFILEBLOCK_HEADER_SIZE_NO_CHECKSUM).append(")"); } String dataBegin = null; if (buf.hasArray()) { dataBegin = Bytes.toStringBinary(buf.array(), buf.arrayOffset() + headerSize(), Math.min(32, buf.limit() - buf.arrayOffset() - headerSize())); } else { ByteBuff bufWithoutHeader = getBufferWithoutHeader(); byte[] dataBeginBytes = new byte[Math.min(32, bufWithoutHeader.limit() - bufWithoutHeader.position())]; bufWithoutHeader.get(dataBeginBytes); dataBegin = Bytes.toStringBinary(dataBeginBytes); } sb.append(", getOnDiskSizeWithHeader=").append(getOnDiskSizeWithHeader()) .append(", totalChecksumBytes=").append(totalChecksumBytes()) .append(", isUnpacked=").append(isUnpacked()) .append(", buf=[").append(buf).append("]") .append(", dataBeginsWith=").append(dataBegin) .append(", fileContext=").append(fileContext) .append("]"); return sb.toString(); } /** * Retrieves the decompressed/decrypted view of this block. An encoded block remains in its * encoded structure. Internal structures are shared between instances where applicable. */ HFileBlock unpack(HFileContext fileContext, FSReader reader) throws IOException { if (!fileContext.isCompressedOrEncrypted()) { // TODO: cannot use our own fileContext here because HFileBlock(ByteBuffer, boolean), // which is used for block serialization to L2 cache, does not preserve encoding and // encryption details. return this; } HFileBlock unpacked = new HFileBlock(this); unpacked.allocateBuffer(); // allocates space for the decompressed block HFileBlockDecodingContext ctx = blockType == BlockType.ENCODED_DATA ? reader.getBlockDecodingContext() : reader.getDefaultBlockDecodingContext(); ByteBuff dup = this.buf.duplicate(); dup.position(this.headerSize()); dup = dup.slice(); ctx.prepareDecoding(unpacked.getOnDiskSizeWithoutHeader(), unpacked.getUncompressedSizeWithoutHeader(), unpacked.getBufferWithoutHeader(), dup); return unpacked; } /** * Always allocates a new buffer of the correct size. Copies header bytes * from the existing buffer. Does not change header fields. * Reserve room to keep checksum bytes too. */ private void allocateBuffer() { int cksumBytes = totalChecksumBytes(); int headerSize = headerSize(); int capacityNeeded = headerSize + uncompressedSizeWithoutHeader + cksumBytes; // TODO we need consider allocating offheap here? ByteBuffer newBuf = ByteBuffer.allocate(capacityNeeded); // Copy header bytes into newBuf. // newBuf is HBB so no issue in calling array() buf.position(0); buf.get(newBuf.array(), newBuf.arrayOffset(), headerSize); buf = new SingleByteBuff(newBuf); // set limit to exclude next block's header buf.limit(headerSize + uncompressedSizeWithoutHeader + cksumBytes); } /** * Return true when this block's buffer has been unpacked, false otherwise. Note this is a * calculated heuristic, not tracked attribute of the block. */ public boolean isUnpacked() { final int cksumBytes = totalChecksumBytes(); final int headerSize = headerSize(); final int expectedCapacity = headerSize + uncompressedSizeWithoutHeader + cksumBytes; final int bufCapacity = buf.capacity(); return bufCapacity == expectedCapacity || bufCapacity == expectedCapacity + headerSize; } /** An additional sanity-check in case no compression or encryption is being used. */ @VisibleForTesting void sanityCheckUncompressedSize() throws IOException { if (onDiskSizeWithoutHeader != uncompressedSizeWithoutHeader + totalChecksumBytes()) { throw new IOException("Using no compression but " + "onDiskSizeWithoutHeader=" + onDiskSizeWithoutHeader + ", " + "uncompressedSizeWithoutHeader=" + uncompressedSizeWithoutHeader + ", numChecksumbytes=" + totalChecksumBytes()); } } /** * Cannot be {@link #UNSET}. Must be a legitimate value. Used re-making the {@link BlockCacheKey} when * block is returned to the cache. * @return the offset of this block in the file it was read from */ long getOffset() { if (offset < 0) { throw new IllegalStateException("HFile block offset not initialized properly"); } return offset; } /** * @return a byte stream reading the data + checksum of this block */ DataInputStream getByteStream() { ByteBuff dup = this.buf.duplicate(); dup.position(this.headerSize()); return new DataInputStream(new ByteBuffInputStream(dup)); } @Override public long heapSize() { long size = ClassSize.align( ClassSize.OBJECT + // Block type, multi byte buffer, MemoryType and meta references 4 * ClassSize.REFERENCE + // On-disk size, uncompressed size, and next block's on-disk size // bytePerChecksum and onDiskDataSize 4 * Bytes.SIZEOF_INT + // This and previous block offset 2 * Bytes.SIZEOF_LONG + // Heap size of the meta object. meta will be always not null. fileContext.heapSize() ); if (buf != null) { // Deep overhead of the byte buffer. Needs to be aligned separately. size += ClassSize.align(buf.capacity() + MULTI_BYTE_BUFFER_HEAP_SIZE); } return ClassSize.align(size); } /** * Read from an input stream at least necessaryLen and if possible, * extraLen also if available. Analogous to * {@link IOUtils#readFully(InputStream, byte[], int, int)}, but specifies a * number of "extra" bytes to also optionally read. * * @param in the input stream to read from * @param buf the buffer to read into * @param bufOffset the destination offset in the buffer * @param necessaryLen the number of bytes that are absolutely necessary to read * @param extraLen the number of extra bytes that would be nice to read * @return true if succeeded reading the extra bytes * @throws IOException if failed to read the necessary bytes */ static boolean readWithExtra(InputStream in, byte[] buf, int bufOffset, int necessaryLen, int extraLen) throws IOException { int bytesRemaining = necessaryLen + extraLen; while (bytesRemaining > 0) { int ret = in.read(buf, bufOffset, bytesRemaining); if (ret == -1 && bytesRemaining <= extraLen) { // We could not read the "extra data", but that is OK. break; } if (ret < 0) { throw new IOException("Premature EOF from inputStream (read " + "returned " + ret + ", was trying to read " + necessaryLen + " necessary bytes and " + extraLen + " extra bytes, " + "successfully read " + (necessaryLen + extraLen - bytesRemaining)); } bufOffset += ret; bytesRemaining -= ret; } return bytesRemaining <= 0; } /** * Read from an input stream at least necessaryLen and if possible, * extraLen also if available. Analogous to * {@link IOUtils#readFully(InputStream, byte[], int, int)}, but uses * positional read and specifies a number of "extra" bytes that would be * desirable but not absolutely necessary to read. * * @param in the input stream to read from * @param position the position within the stream from which to start reading * @param buf the buffer to read into * @param bufOffset the destination offset in the buffer * @param necessaryLen the number of bytes that are absolutely necessary to * read * @param extraLen the number of extra bytes that would be nice to read * @return true if and only if extraLen is > 0 and reading those extra bytes * was successful * @throws IOException if failed to read the necessary bytes */ @VisibleForTesting static boolean positionalReadWithExtra(FSDataInputStream in, long position, byte[] buf, int bufOffset, int necessaryLen, int extraLen) throws IOException { int bytesRemaining = necessaryLen + extraLen; int bytesRead = 0; while (bytesRead < necessaryLen) { int ret = in.read(position, buf, bufOffset, bytesRemaining); if (ret < 0) { throw new IOException("Premature EOF from inputStream (positional read " + "returned " + ret + ", was trying to read " + necessaryLen + " necessary bytes and " + extraLen + " extra bytes, " + "successfully read " + bytesRead); } position += ret; bufOffset += ret; bytesRemaining -= ret; bytesRead += ret; } return bytesRead != necessaryLen && bytesRemaining <= 0; } /** * Unified version 2 {@link HFile} block writer. The intended usage pattern * is as follows: *

    *
  1. Construct an {@link HFileBlock.Writer}, providing a compression algorithm. *
  2. Call {@link Writer#startWriting} and get a data stream to write to. *
  3. Write your data into the stream. *
  4. Call Writer#writeHeaderAndData(FSDataOutputStream) as many times as you need to. * store the serialized block into an external stream. *
  5. Repeat to write more blocks. *
*

*/ static class Writer { private enum State { INIT, WRITING, BLOCK_READY }; /** Writer state. Used to ensure the correct usage protocol. */ private State state = State.INIT; /** Data block encoder used for data blocks */ private final HFileDataBlockEncoder dataBlockEncoder; private HFileBlockEncodingContext dataBlockEncodingCtx; /** block encoding context for non-data blocks*/ private HFileBlockDefaultEncodingContext defaultBlockEncodingCtx; /** * The stream we use to accumulate data into a block in an uncompressed format. * We reset this stream at the end of each block and reuse it. The * header is written as the first {@link HConstants#HFILEBLOCK_HEADER_SIZE} bytes into this * stream. */ private ByteArrayOutputStream baosInMemory; /** * Current block type. Set in {@link #startWriting(BlockType)}. Could be * changed in {@link #finishBlock()} from {@link BlockType#DATA} * to {@link BlockType#ENCODED_DATA}. */ private BlockType blockType; /** * A stream that we write uncompressed bytes to, which compresses them and * writes them to {@link #baosInMemory}. */ private DataOutputStream userDataStream; // Size of actual data being written. Not considering the block encoding/compression. This // includes the header size also. private int unencodedDataSizeWritten; // Size of actual data being written. considering the block encoding. This // includes the header size also. private int encodedDataSizeWritten; /** * Bytes to be written to the file system, including the header. Compressed * if compression is turned on. It also includes the checksum data that * immediately follows the block data. (header + data + checksums) */ private ByteArrayOutputStream onDiskBlockBytesWithHeader; /** * The size of the checksum data on disk. It is used only if data is * not compressed. If data is compressed, then the checksums are already * part of onDiskBytesWithHeader. If data is uncompressed, then this * variable stores the checksum data for this block. */ private byte[] onDiskChecksum = HConstants.EMPTY_BYTE_ARRAY; /** * Current block's start offset in the {@link HFile}. Set in * {@link #writeHeaderAndData(FSDataOutputStream)}. */ private long startOffset; /** * Offset of previous block by block type. Updated when the next block is * started. */ private long[] prevOffsetByType; /** The offset of the previous block of the same type */ private long prevOffset; /** Meta data that holds information about the hfileblock**/ private HFileContext fileContext; /** * @param dataBlockEncoder data block encoding algorithm to use */ public Writer(HFileDataBlockEncoder dataBlockEncoder, HFileContext fileContext) { if (fileContext.getBytesPerChecksum() < HConstants.HFILEBLOCK_HEADER_SIZE) { throw new RuntimeException("Unsupported value of bytesPerChecksum. " + " Minimum is " + HConstants.HFILEBLOCK_HEADER_SIZE + " but the configured value is " + fileContext.getBytesPerChecksum()); } this.dataBlockEncoder = dataBlockEncoder != null? dataBlockEncoder: NoOpDataBlockEncoder.INSTANCE; this.dataBlockEncodingCtx = this.dataBlockEncoder. newDataBlockEncodingContext(HConstants.HFILEBLOCK_DUMMY_HEADER, fileContext); // TODO: This should be lazily instantiated since we usually do NOT need this default encoder this.defaultBlockEncodingCtx = new HFileBlockDefaultEncodingContext(null, HConstants.HFILEBLOCK_DUMMY_HEADER, fileContext); // TODO: Set BAOS initial size. Use fileContext.getBlocksize() and add for header/checksum baosInMemory = new ByteArrayOutputStream(); prevOffsetByType = new long[BlockType.values().length]; for (int i = 0; i < prevOffsetByType.length; ++i) { prevOffsetByType[i] = UNSET; } // TODO: Why fileContext saved away when we have dataBlockEncoder and/or // defaultDataBlockEncoder? this.fileContext = fileContext; } /** * Starts writing into the block. The previous block's data is discarded. * * @return the stream the user can write their data into * @throws IOException */ DataOutputStream startWriting(BlockType newBlockType) throws IOException { if (state == State.BLOCK_READY && startOffset != -1) { // We had a previous block that was written to a stream at a specific // offset. Save that offset as the last offset of a block of that type. prevOffsetByType[blockType.getId()] = startOffset; } startOffset = -1; blockType = newBlockType; baosInMemory.reset(); baosInMemory.write(HConstants.HFILEBLOCK_DUMMY_HEADER); state = State.WRITING; // We will compress it later in finishBlock() userDataStream = new ByteBufferWriterDataOutputStream(baosInMemory); if (newBlockType == BlockType.DATA) { this.dataBlockEncoder.startBlockEncoding(dataBlockEncodingCtx, userDataStream); } this.unencodedDataSizeWritten = 0; this.encodedDataSizeWritten = 0; return userDataStream; } /** * Writes the Cell to this block * @param cell * @throws IOException */ void write(Cell cell) throws IOException{ expectState(State.WRITING); int posBeforeEncode = this.userDataStream.size(); this.unencodedDataSizeWritten += this.dataBlockEncoder.encode(cell, dataBlockEncodingCtx, this.userDataStream); this.encodedDataSizeWritten += this.userDataStream.size() - posBeforeEncode; } /** * Returns the stream for the user to write to. The block writer takes care * of handling compression and buffering for caching on write. Can only be * called in the "writing" state. * * @return the data output stream for the user to write to */ DataOutputStream getUserDataStream() { expectState(State.WRITING); return userDataStream; } /** * Transitions the block writer from the "writing" state to the "block * ready" state. Does nothing if a block is already finished. */ void ensureBlockReady() throws IOException { Preconditions.checkState(state != State.INIT, "Unexpected state: " + state); if (state == State.BLOCK_READY) { return; } // This will set state to BLOCK_READY. finishBlock(); } /** * Finish up writing of the block. * Flushes the compressing stream (if using compression), fills out the header, * does any compression/encryption of bytes to flush out to disk, and manages * the cache on write content, if applicable. Sets block write state to "block ready". */ private void finishBlock() throws IOException { if (blockType == BlockType.DATA) { this.dataBlockEncoder.endBlockEncoding(dataBlockEncodingCtx, userDataStream, baosInMemory.getBuffer(), blockType); blockType = dataBlockEncodingCtx.getBlockType(); } userDataStream.flush(); prevOffset = prevOffsetByType[blockType.getId()]; // We need to set state before we can package the block up for cache-on-write. In a way, the // block is ready, but not yet encoded or compressed. state = State.BLOCK_READY; Bytes compressAndEncryptDat; if (blockType == BlockType.DATA || blockType == BlockType.ENCODED_DATA) { compressAndEncryptDat = dataBlockEncodingCtx. compressAndEncrypt(baosInMemory.getBuffer(), 0, baosInMemory.size()); } else { compressAndEncryptDat = defaultBlockEncodingCtx. compressAndEncrypt(baosInMemory.getBuffer(), 0, baosInMemory.size()); } if (compressAndEncryptDat == null) { compressAndEncryptDat = new Bytes(baosInMemory.getBuffer(), 0, baosInMemory.size()); } if (onDiskBlockBytesWithHeader == null) { onDiskBlockBytesWithHeader = new ByteArrayOutputStream(compressAndEncryptDat.getLength()); } onDiskBlockBytesWithHeader.reset(); onDiskBlockBytesWithHeader.write(compressAndEncryptDat.get(), compressAndEncryptDat.getOffset(), compressAndEncryptDat.getLength()); // Calculate how many bytes we need for checksum on the tail of the block. int numBytes = (int) ChecksumUtil.numBytes( onDiskBlockBytesWithHeader.size(), fileContext.getBytesPerChecksum()); // Put the header for the on disk bytes; header currently is unfilled-out putHeader(onDiskBlockBytesWithHeader, onDiskBlockBytesWithHeader.size() + numBytes, baosInMemory.size(), onDiskBlockBytesWithHeader.size()); if (onDiskChecksum.length != numBytes) { onDiskChecksum = new byte[numBytes]; } ChecksumUtil.generateChecksums( onDiskBlockBytesWithHeader.getBuffer(), 0,onDiskBlockBytesWithHeader.size(), onDiskChecksum, 0, fileContext.getChecksumType(), fileContext.getBytesPerChecksum()); } /** * Put the header into the given byte array at the given offset. * @param onDiskSize size of the block on disk header + data + checksum * @param uncompressedSize size of the block after decompression (but * before optional data block decoding) including header * @param onDiskDataSize size of the block on disk with header * and data but not including the checksums */ private void putHeader(byte[] dest, int offset, int onDiskSize, int uncompressedSize, int onDiskDataSize) { offset = blockType.put(dest, offset); offset = Bytes.putInt(dest, offset, onDiskSize - HConstants.HFILEBLOCK_HEADER_SIZE); offset = Bytes.putInt(dest, offset, uncompressedSize - HConstants.HFILEBLOCK_HEADER_SIZE); offset = Bytes.putLong(dest, offset, prevOffset); offset = Bytes.putByte(dest, offset, fileContext.getChecksumType().getCode()); offset = Bytes.putInt(dest, offset, fileContext.getBytesPerChecksum()); Bytes.putInt(dest, offset, onDiskDataSize); } private void putHeader(ByteArrayOutputStream dest, int onDiskSize, int uncompressedSize, int onDiskDataSize) { putHeader(dest.getBuffer(),0, onDiskSize, uncompressedSize, onDiskDataSize); } /** * Similar to {@link #writeHeaderAndData(FSDataOutputStream)}, but records * the offset of this block so that it can be referenced in the next block * of the same type. * * @param out * @throws IOException */ void writeHeaderAndData(FSDataOutputStream out) throws IOException { long offset = out.getPos(); if (startOffset != UNSET && offset != startOffset) { throw new IOException("A " + blockType + " block written to a " + "stream twice, first at offset " + startOffset + ", then at " + offset); } startOffset = offset; finishBlockAndWriteHeaderAndData((DataOutputStream) out); } /** * Writes the header and the compressed data of this block (or uncompressed * data when not using compression) into the given stream. Can be called in * the "writing" state or in the "block ready" state. If called in the * "writing" state, transitions the writer to the "block ready" state. * * @param out the output stream to write the * @throws IOException */ protected void finishBlockAndWriteHeaderAndData(DataOutputStream out) throws IOException { ensureBlockReady(); long startTime = System.currentTimeMillis(); out.write(onDiskBlockBytesWithHeader.getBuffer(), 0, onDiskBlockBytesWithHeader.size()); out.write(onDiskChecksum); HFile.updateWriteLatency(System.currentTimeMillis() - startTime); } /** * Returns the header or the compressed data (or uncompressed data when not * using compression) as a byte array. Can be called in the "writing" state * or in the "block ready" state. If called in the "writing" state, * transitions the writer to the "block ready" state. This returns * the header + data + checksums stored on disk. * * @return header and data as they would be stored on disk in a byte array * @throws IOException */ byte[] getHeaderAndDataForTest() throws IOException { ensureBlockReady(); // This is not very optimal, because we are doing an extra copy. // But this method is used only by unit tests. byte[] output = new byte[onDiskBlockBytesWithHeader.size() + onDiskChecksum.length]; System.arraycopy(onDiskBlockBytesWithHeader.getBuffer(), 0, output, 0, onDiskBlockBytesWithHeader.size()); System.arraycopy(onDiskChecksum, 0, output, onDiskBlockBytesWithHeader.size(), onDiskChecksum.length); return output; } /** * Releases resources used by this writer. */ void release() { if (dataBlockEncodingCtx != null) { dataBlockEncodingCtx.close(); dataBlockEncodingCtx = null; } if (defaultBlockEncodingCtx != null) { defaultBlockEncodingCtx.close(); defaultBlockEncodingCtx = null; } } /** * Returns the on-disk size of the data portion of the block. This is the * compressed size if compression is enabled. Can only be called in the * "block ready" state. Header is not compressed, and its size is not * included in the return value. * * @return the on-disk size of the block, not including the header. */ int getOnDiskSizeWithoutHeader() { expectState(State.BLOCK_READY); return onDiskBlockBytesWithHeader.size() + onDiskChecksum.length - HConstants.HFILEBLOCK_HEADER_SIZE; } /** * Returns the on-disk size of the block. Can only be called in the * "block ready" state. * * @return the on-disk size of the block ready to be written, including the * header size, the data and the checksum data. */ int getOnDiskSizeWithHeader() { expectState(State.BLOCK_READY); return onDiskBlockBytesWithHeader.size() + onDiskChecksum.length; } /** * The uncompressed size of the block data. Does not include header size. */ int getUncompressedSizeWithoutHeader() { expectState(State.BLOCK_READY); return baosInMemory.size() - HConstants.HFILEBLOCK_HEADER_SIZE; } /** * The uncompressed size of the block data, including header size. */ int getUncompressedSizeWithHeader() { expectState(State.BLOCK_READY); return baosInMemory.size(); } /** @return true if a block is being written */ boolean isWriting() { return state == State.WRITING; } /** * Returns the number of bytes written into the current block so far, or * zero if not writing the block at the moment. Note that this will return * zero in the "block ready" state as well. * * @return the number of bytes written */ public int encodedBlockSizeWritten() { if (state != State.WRITING) return 0; return this.encodedDataSizeWritten; } /** * Returns the number of bytes written into the current block so far, or * zero if not writing the block at the moment. Note that this will return * zero in the "block ready" state as well. * * @return the number of bytes written */ int blockSizeWritten() { if (state != State.WRITING) return 0; return this.unencodedDataSizeWritten; } /** * Clones the header followed by the uncompressed data, even if using * compression. This is needed for storing uncompressed blocks in the block * cache. Can be called in the "writing" state or the "block ready" state. * Returns only the header and data, does not include checksum data. * * @return Returns a copy of uncompressed block bytes for caching on write */ @VisibleForTesting ByteBuffer cloneUncompressedBufferWithHeader() { expectState(State.BLOCK_READY); byte[] uncompressedBlockBytesWithHeader = baosInMemory.toByteArray(); int numBytes = (int) ChecksumUtil.numBytes( onDiskBlockBytesWithHeader.size(), fileContext.getBytesPerChecksum()); putHeader(uncompressedBlockBytesWithHeader, 0, onDiskBlockBytesWithHeader.size() + numBytes, baosInMemory.size(), onDiskBlockBytesWithHeader.size()); return ByteBuffer.wrap(uncompressedBlockBytesWithHeader); } /** * Clones the header followed by the on-disk (compressed/encoded/encrypted) data. This is * needed for storing packed blocks in the block cache. Expects calling semantics identical to * {@link #getUncompressedBufferWithHeader()}. Returns only the header and data, * Does not include checksum data. * * @return Returns a copy of block bytes for caching on write */ private ByteBuffer cloneOnDiskBufferWithHeader() { expectState(State.BLOCK_READY); return ByteBuffer.wrap(onDiskBlockBytesWithHeader.toByteArray()); } private void expectState(State expectedState) { if (state != expectedState) { throw new IllegalStateException("Expected state: " + expectedState + ", actual state: " + state); } } /** * Takes the given {@link BlockWritable} instance, creates a new block of * its appropriate type, writes the writable into this block, and flushes * the block into the output stream. The writer is instructed not to buffer * uncompressed bytes for cache-on-write. * * @param bw the block-writable object to write as a block * @param out the file system output stream * @throws IOException */ void writeBlock(BlockWritable bw, FSDataOutputStream out) throws IOException { bw.writeToBlock(startWriting(bw.getBlockType())); writeHeaderAndData(out); } /** * Creates a new HFileBlock. Checksums have already been validated, so * the byte buffer passed into the constructor of this newly created * block does not have checksum data even though the header minor * version is MINOR_VERSION_WITH_CHECKSUM. This is indicated by setting a * 0 value in bytesPerChecksum. This method copies the on-disk or * uncompressed data to build the HFileBlock which is used only * while writing blocks and caching. * *

TODO: Should there be an option where a cache can ask that hbase preserve block * checksums for checking after a block comes out of the cache? Otehrwise, cache is responsible * for blocks being wholesome (ECC memory or if file-backed, it does checksumming). */ HFileBlock getBlockForCaching(CacheConfig cacheConf) { HFileContext newContext = new HFileContextBuilder() .withBlockSize(fileContext.getBlocksize()) .withBytesPerCheckSum(0) .withChecksumType(ChecksumType.NULL) // no checksums in cached data .withCompression(fileContext.getCompression()) .withDataBlockEncoding(fileContext.getDataBlockEncoding()) .withHBaseCheckSum(fileContext.isUseHBaseChecksum()) .withCompressTags(fileContext.isCompressTags()) .withIncludesMvcc(fileContext.isIncludesMvcc()) .withIncludesTags(fileContext.isIncludesTags()) .build(); return new HFileBlock(blockType, getOnDiskSizeWithoutHeader(), getUncompressedSizeWithoutHeader(), prevOffset, cacheConf.shouldCacheCompressed(blockType.getCategory())? cloneOnDiskBufferWithHeader() : cloneUncompressedBufferWithHeader(), FILL_HEADER, startOffset, UNSET, onDiskBlockBytesWithHeader.size() + onDiskChecksum.length, newContext); } } /** Something that can be written into a block. */ interface BlockWritable { /** The type of block this data should use. */ BlockType getBlockType(); /** * Writes the block to the provided stream. Must not write any magic * records. * * @param out a stream to write uncompressed data into */ void writeToBlock(DataOutput out) throws IOException; } /** Iterator for {@link HFileBlock}s. */ interface BlockIterator { /** * Get the next block, or null if there are no more blocks to iterate. */ HFileBlock nextBlock() throws IOException; /** * Similar to {@link #nextBlock()} but checks block type, throws an * exception if incorrect, and returns the HFile block */ HFileBlock nextBlockWithBlockType(BlockType blockType) throws IOException; } /** An HFile block reader with iteration ability. */ interface FSReader { /** * Reads the block at the given offset in the file with the given on-disk * size and uncompressed size. * * @param offset * @param onDiskSize the on-disk size of the entire block, including all * applicable headers, or -1 if unknown * @return the newly read block */ HFileBlock readBlockData(long offset, long onDiskSize, boolean pread, boolean updateMetrics) throws IOException; /** * Creates a block iterator over the given portion of the {@link HFile}. * The iterator returns blocks starting with offset such that offset <= * startOffset < endOffset. Returned blocks are always unpacked. * Used when no hfile index available; e.g. reading in the hfile index * blocks themselves on file open. * * @param startOffset the offset of the block to start iteration with * @param endOffset the offset to end iteration at (exclusive) * @return an iterator of blocks between the two given offsets */ BlockIterator blockRange(long startOffset, long endOffset); /** Closes the backing streams */ void closeStreams() throws IOException; /** Get a decoder for {@link BlockType#ENCODED_DATA} blocks from this file. */ HFileBlockDecodingContext getBlockDecodingContext(); /** Get the default decoder for blocks from this file. */ HFileBlockDecodingContext getDefaultBlockDecodingContext(); void setIncludesMemStoreTS(boolean includesMemstoreTS); void setDataBlockEncoder(HFileDataBlockEncoder encoder); /** * To close the stream's socket. Note: This can be concurrently called from multiple threads and * implementation should take care of thread safety. */ void unbufferStream(); } /** * Data-structure to use caching the header of the NEXT block. Only works if next read * that comes in here is next in sequence in this block. * * When we read, we read current block and the next blocks' header. We do this so we have * the length of the next block to read if the hfile index is not available (rare, at * hfile open only). */ private static class PrefetchedHeader { long offset = -1; byte [] header = new byte[HConstants.HFILEBLOCK_HEADER_SIZE]; final ByteBuffer buf = ByteBuffer.wrap(header, 0, HConstants.HFILEBLOCK_HEADER_SIZE); @Override public String toString() { return "offset=" + this.offset + ", header=" + Bytes.toStringBinary(header); } } /** * Reads version 2 HFile blocks from the filesystem. */ static class FSReaderImpl implements FSReader { /** The file system stream of the underlying {@link HFile} that * does or doesn't do checksum validations in the filesystem */ private FSDataInputStreamWrapper streamWrapper; private HFileBlockDecodingContext encodedBlockDecodingCtx; /** Default context used when BlockType != {@link BlockType#ENCODED_DATA}. */ private final HFileBlockDefaultDecodingContext defaultDecodingCtx; /** * Cache of the NEXT header after this. Check it is indeed next blocks header * before using it. TODO: Review. This overread into next block to fetch * next blocks header seems unnecessary given we usually get the block size * from the hfile index. Review! */ private AtomicReference prefetchedHeader = new AtomicReference<>(new PrefetchedHeader()); /** The size of the file we are reading from, or -1 if unknown. */ private long fileSize; /** The size of the header */ @VisibleForTesting protected final int hdrSize; /** The filesystem used to access data */ private HFileSystem hfs; private HFileContext fileContext; // Cache the fileName private String pathName; private final Lock streamLock = new ReentrantLock(); FSReaderImpl(FSDataInputStreamWrapper stream, long fileSize, HFileSystem hfs, Path path, HFileContext fileContext) throws IOException { this.fileSize = fileSize; this.hfs = hfs; if (path != null) { this.pathName = path.toString(); } this.fileContext = fileContext; this.hdrSize = headerSize(fileContext.isUseHBaseChecksum()); this.streamWrapper = stream; // Older versions of HBase didn't support checksum. this.streamWrapper.prepareForBlockReader(!fileContext.isUseHBaseChecksum()); defaultDecodingCtx = new HFileBlockDefaultDecodingContext(fileContext); encodedBlockDecodingCtx = defaultDecodingCtx; } /** * A constructor that reads files with the latest minor version. * This is used by unit tests only. */ FSReaderImpl(FSDataInputStream istream, long fileSize, HFileContext fileContext) throws IOException { this(new FSDataInputStreamWrapper(istream), fileSize, null, null, fileContext); } public BlockIterator blockRange(final long startOffset, final long endOffset) { final FSReader owner = this; // handle for inner class return new BlockIterator() { private long offset = startOffset; // Cache length of next block. Current block has the length of next block in it. private long length = -1; @Override public HFileBlock nextBlock() throws IOException { if (offset >= endOffset) { return null; } HFileBlock b = readBlockData(offset, length, false, false); offset += b.getOnDiskSizeWithHeader(); length = b.getNextBlockOnDiskSize(); return b.unpack(fileContext, owner); } @Override public HFileBlock nextBlockWithBlockType(BlockType blockType) throws IOException { HFileBlock blk = nextBlock(); if (blk.getBlockType() != blockType) { throw new IOException("Expected block of type " + blockType + " but found " + blk.getBlockType()); } return blk; } }; } /** * Does a positional read or a seek and read into the given buffer. Returns * the on-disk size of the next block, or -1 if it could not be read/determined; e.g. EOF. * * @param dest destination buffer * @param destOffset offset into the destination buffer at where to put the bytes we read * @param size size of read * @param peekIntoNextBlock whether to read the next block's on-disk size * @param fileOffset position in the stream to read at * @param pread whether we should do a positional read * @param istream The input source of data * @return the on-disk size of the next block with header size included, or * -1 if it could not be determined; if not -1, the dest INCLUDES the * next header * @throws IOException */ @VisibleForTesting protected int readAtOffset(FSDataInputStream istream, byte[] dest, int destOffset, int size, boolean peekIntoNextBlock, long fileOffset, boolean pread) throws IOException { if (peekIntoNextBlock && destOffset + size + hdrSize > dest.length) { // We are asked to read the next block's header as well, but there is // not enough room in the array. throw new IOException("Attempted to read " + size + " bytes and " + hdrSize + " bytes of next header into a " + dest.length + "-byte array at offset " + destOffset); } if (!pread) { // Seek + read. Better for scanning. HFileUtil.seekOnMultipleSources(istream, fileOffset); // TODO: do we need seek time latencies? long realOffset = istream.getPos(); if (realOffset != fileOffset) { throw new IOException("Tried to seek to " + fileOffset + " to " + "read " + size + " bytes, but pos=" + realOffset + " after seek"); } if (!peekIntoNextBlock) { IOUtils.readFully(istream, dest, destOffset, size); return -1; } // Try to read the next block header. if (!readWithExtra(istream, dest, destOffset, size, hdrSize)) { return -1; } } else { // Positional read. Better for random reads; or when the streamLock is already locked. int extraSize = peekIntoNextBlock ? hdrSize : 0; if (!positionalReadWithExtra(istream, fileOffset, dest, destOffset, size, extraSize)) { return -1; } } assert peekIntoNextBlock; return Bytes.toInt(dest, destOffset + size + BlockType.MAGIC_LENGTH) + hdrSize; } /** * Reads a version 2 block (version 1 blocks not supported and not expected). Tries to do as * little memory allocation as possible, using the provided on-disk size. * * @param offset the offset in the stream to read at * @param onDiskSizeWithHeaderL the on-disk size of the block, including * the header, or -1 if unknown; i.e. when iterating over blocks reading * in the file metadata info. * @param pread whether to use a positional read */ @Override public HFileBlock readBlockData(long offset, long onDiskSizeWithHeaderL, boolean pread, boolean updateMetrics) throws IOException { // Get a copy of the current state of whether to validate // hbase checksums or not for this read call. This is not // thread-safe but the one constaint is that if we decide // to skip hbase checksum verification then we are // guaranteed to use hdfs checksum verification. boolean doVerificationThruHBaseChecksum = streamWrapper.shouldUseHBaseChecksum(); FSDataInputStream is = streamWrapper.getStream(doVerificationThruHBaseChecksum); HFileBlock blk = readBlockDataInternal(is, offset, onDiskSizeWithHeaderL, pread, doVerificationThruHBaseChecksum, updateMetrics); if (blk == null) { HFile.LOG.warn("HBase checksum verification failed for file " + pathName + " at offset " + offset + " filesize " + fileSize + ". Retrying read with HDFS checksums turned on..."); if (!doVerificationThruHBaseChecksum) { String msg = "HBase checksum verification failed for file " + pathName + " at offset " + offset + " filesize " + fileSize + " but this cannot happen because doVerify is " + doVerificationThruHBaseChecksum; HFile.LOG.warn(msg); throw new IOException(msg); // cannot happen case here } HFile.CHECKSUM_FAILURES.increment(); // update metrics // If we have a checksum failure, we fall back into a mode where // the next few reads use HDFS level checksums. We aim to make the // next CHECKSUM_VERIFICATION_NUM_IO_THRESHOLD reads avoid // hbase checksum verification, but since this value is set without // holding any locks, it can so happen that we might actually do // a few more than precisely this number. is = this.streamWrapper.fallbackToFsChecksum(CHECKSUM_VERIFICATION_NUM_IO_THRESHOLD); doVerificationThruHBaseChecksum = false; blk = readBlockDataInternal(is, offset, onDiskSizeWithHeaderL, pread, doVerificationThruHBaseChecksum, updateMetrics); if (blk != null) { HFile.LOG.warn("HDFS checksum verification succeeded for file " + pathName + " at offset " + offset + " filesize " + fileSize); } } if (blk == null && !doVerificationThruHBaseChecksum) { String msg = "readBlockData failed, possibly due to " + "checksum verification failed for file " + pathName + " at offset " + offset + " filesize " + fileSize; HFile.LOG.warn(msg); throw new IOException(msg); } // If there is a checksum mismatch earlier, then retry with // HBase checksums switched off and use HDFS checksum verification. // This triggers HDFS to detect and fix corrupt replicas. The // next checksumOffCount read requests will use HDFS checksums. // The decrementing of this.checksumOffCount is not thread-safe, // but it is harmless because eventually checksumOffCount will be // a negative number. streamWrapper.checksumOk(); return blk; } /** * @return Check onDiskSizeWithHeaderL size is healthy and then return it as an int * @throws IOException */ private static int checkAndGetSizeAsInt(final long onDiskSizeWithHeaderL, final int hdrSize) throws IOException { if ((onDiskSizeWithHeaderL < hdrSize && onDiskSizeWithHeaderL != -1) || onDiskSizeWithHeaderL >= Integer.MAX_VALUE) { throw new IOException("Invalid onDisksize=" + onDiskSizeWithHeaderL + ": expected to be at least " + hdrSize + " and at most " + Integer.MAX_VALUE + ", or -1"); } return (int)onDiskSizeWithHeaderL; } /** * Verify the passed in onDiskSizeWithHeader aligns with what is in the header else something * is not right. * @throws IOException */ private void verifyOnDiskSizeMatchesHeader(final int passedIn, final ByteBuffer headerBuf, final long offset, boolean verifyChecksum) throws IOException { // Assert size provided aligns with what is in the header int fromHeader = getOnDiskSizeWithHeader(headerBuf, verifyChecksum); if (passedIn != fromHeader) { throw new IOException("Passed in onDiskSizeWithHeader=" + passedIn + " != " + fromHeader + ", offset=" + offset + ", fileContext=" + this.fileContext); } } /** * Check atomic reference cache for this block's header. Cache only good if next * read coming through is next in sequence in the block. We read next block's * header on the tail of reading the previous block to save a seek. Otherwise, * we have to do a seek to read the header before we can pull in the block OR * we have to backup the stream because we over-read (the next block's header). * @see PrefetchedHeader * @return The cached block header or null if not found. * @see #cacheNextBlockHeader(long, byte[], int, int) */ private ByteBuffer getCachedHeader(final long offset) { PrefetchedHeader ph = this.prefetchedHeader.get(); return ph != null && ph.offset == offset? ph.buf: null; } /** * Save away the next blocks header in atomic reference. * @see #getCachedHeader(long) * @see PrefetchedHeader */ private void cacheNextBlockHeader(final long offset, final byte [] header, final int headerOffset, final int headerLength) { PrefetchedHeader ph = new PrefetchedHeader(); ph.offset = offset; System.arraycopy(header, headerOffset, ph.header, 0, headerLength); this.prefetchedHeader.set(ph); } /** * Reads a version 2 block. * * @param offset the offset in the stream to read at. * @param onDiskSizeWithHeaderL the on-disk size of the block, including * the header and checksums if present or -1 if unknown (as a long). Can be -1 * if we are doing raw iteration of blocks as when loading up file metadata; i.e. * the first read of a new file. Usually non-null gotten from the file index. * @param pread whether to use a positional read * @param verifyChecksum Whether to use HBase checksums. * If HBase checksum is switched off, then use HDFS checksum. Can also flip on/off * reading same file if we hit a troublesome patch in an hfile. * @return the HFileBlock or null if there is a HBase checksum mismatch */ @VisibleForTesting protected HFileBlock readBlockDataInternal(FSDataInputStream is, long offset, long onDiskSizeWithHeaderL, boolean pread, boolean verifyChecksum, boolean updateMetrics) throws IOException { if (offset < 0) { throw new IOException("Invalid offset=" + offset + " trying to read " + "block (onDiskSize=" + onDiskSizeWithHeaderL + ")"); } int onDiskSizeWithHeader = checkAndGetSizeAsInt(onDiskSizeWithHeaderL, hdrSize); // Try and get cached header. Will serve us in rare case where onDiskSizeWithHeaderL is -1 // and will save us having to seek the stream backwards to reread the header we // read the last time through here. ByteBuffer headerBuf = getCachedHeader(offset); if (LOG.isTraceEnabled()) { LOG.trace("Reading " + this.fileContext.getHFileName() + " at offset=" + offset + ", pread=" + pread + ", verifyChecksum=" + verifyChecksum + ", cachedHeader=" + headerBuf + ", onDiskSizeWithHeader=" + onDiskSizeWithHeader); } // This is NOT same as verifyChecksum. This latter is whether to do hbase // checksums. Can change with circumstances. The below flag is whether the // file has support for checksums (version 2+). boolean checksumSupport = this.fileContext.isUseHBaseChecksum(); long startTime = System.currentTimeMillis(); if (onDiskSizeWithHeader <= 0) { // We were not passed the block size. Need to get it from the header. If header was // not cached (see getCachedHeader above), need to seek to pull it in. This is costly // and should happen very rarely. Currently happens on open of a hfile reader where we // read the trailer blocks to pull in the indices. Otherwise, we are reading block sizes // out of the hfile index. To check, enable TRACE in this file and you'll get an exception // in a LOG every time we seek. See HBASE-17072 for more detail. if (headerBuf == null) { if (LOG.isTraceEnabled()) { LOG.trace("Extra see to get block size!", new RuntimeException()); } headerBuf = ByteBuffer.allocate(hdrSize); readAtOffset(is, headerBuf.array(), headerBuf.arrayOffset(), hdrSize, false, offset, pread); } onDiskSizeWithHeader = getOnDiskSizeWithHeader(headerBuf, checksumSupport); } int preReadHeaderSize = headerBuf == null? 0 : hdrSize; // Allocate enough space to fit the next block's header too; saves a seek next time through. // onDiskBlock is whole block + header + checksums then extra hdrSize to read next header; // onDiskSizeWithHeader is header, body, and any checksums if present. preReadHeaderSize // says where to start reading. If we have the header cached, then we don't need to read // it again and we can likely read from last place we left off w/o need to backup and reread // the header we read last time through here. // TODO: Make this ByteBuffer-based. Will make it easier to go to HDFS with BBPool (offheap). byte [] onDiskBlock = new byte[onDiskSizeWithHeader + hdrSize]; int nextBlockOnDiskSize = readAtOffset(is, onDiskBlock, preReadHeaderSize, onDiskSizeWithHeader - preReadHeaderSize, true, offset + preReadHeaderSize, pread); if (headerBuf != null) { // The header has been read when reading the previous block OR in a distinct header-only // read. Copy to this block's header. System.arraycopy(headerBuf.array(), headerBuf.arrayOffset(), onDiskBlock, 0, hdrSize); } else { headerBuf = ByteBuffer.wrap(onDiskBlock, 0, hdrSize); } // Do a few checks before we go instantiate HFileBlock. assert onDiskSizeWithHeader > this.hdrSize; verifyOnDiskSizeMatchesHeader(onDiskSizeWithHeader, headerBuf, offset, checksumSupport); ByteBuffer onDiskBlockByteBuffer = ByteBuffer.wrap(onDiskBlock, 0, onDiskSizeWithHeader); // Verify checksum of the data before using it for building HFileBlock. if (verifyChecksum && !validateChecksum(offset, onDiskBlockByteBuffer, hdrSize)) { return null; } long duration = System.currentTimeMillis() - startTime; if (updateMetrics) { HFile.updateReadLatency(duration, pread); } // The onDiskBlock will become the headerAndDataBuffer for this block. // If nextBlockOnDiskSizeWithHeader is not zero, the onDiskBlock already // contains the header of next block, so no need to set next block's header in it. HFileBlock hFileBlock = new HFileBlock(new SingleByteBuff(onDiskBlockByteBuffer), checksumSupport, MemoryType.EXCLUSIVE, offset, nextBlockOnDiskSize, fileContext); // Run check on uncompressed sizings. if (!fileContext.isCompressedOrEncrypted()) { hFileBlock.sanityCheckUncompressed(); } if (LOG.isTraceEnabled()) { LOG.trace("Read " + hFileBlock + " in " + duration + " ns"); } // Cache next block header if we read it for the next time through here. if (nextBlockOnDiskSize != -1) { cacheNextBlockHeader(offset + hFileBlock.getOnDiskSizeWithHeader(), onDiskBlock, onDiskSizeWithHeader, hdrSize); } return hFileBlock; } @Override public void setIncludesMemStoreTS(boolean includesMemstoreTS) { this.fileContext.setIncludesMvcc(includesMemstoreTS); } @Override public void setDataBlockEncoder(HFileDataBlockEncoder encoder) { encodedBlockDecodingCtx = encoder.newDataBlockDecodingContext(this.fileContext); } @Override public HFileBlockDecodingContext getBlockDecodingContext() { return this.encodedBlockDecodingCtx; } @Override public HFileBlockDecodingContext getDefaultBlockDecodingContext() { return this.defaultDecodingCtx; } /** * Generates the checksum for the header as well as the data and then validates it. * If the block doesn't uses checksum, returns false. * @return True if checksum matches, else false. */ private boolean validateChecksum(long offset, ByteBuffer data, int hdrSize) throws IOException { // If this is an older version of the block that does not have checksums, then return false // indicating that checksum verification did not succeed. Actually, this method should never // be called when the minorVersion is 0, thus this is a defensive check for a cannot-happen // case. Since this is a cannot-happen case, it is better to return false to indicate a // checksum validation failure. if (!fileContext.isUseHBaseChecksum()) { return false; } return ChecksumUtil.validateChecksum(data, pathName, offset, hdrSize); } @Override public void closeStreams() throws IOException { streamWrapper.close(); } @Override public void unbufferStream() { // To handle concurrent reads, ensure that no other client is accessing the streams while we // unbuffer it. if (streamLock.tryLock()) { try { this.streamWrapper.unbuffer(); } finally { streamLock.unlock(); } } } @Override public String toString() { return "hfs=" + hfs + ", path=" + pathName + ", fileContext=" + fileContext; } } /** An additional sanity-check in case no compression or encryption is being used. */ @VisibleForTesting void sanityCheckUncompressed() throws IOException { if (onDiskSizeWithoutHeader != uncompressedSizeWithoutHeader + totalChecksumBytes()) { throw new IOException("Using no compression but " + "onDiskSizeWithoutHeader=" + onDiskSizeWithoutHeader + ", " + "uncompressedSizeWithoutHeader=" + uncompressedSizeWithoutHeader + ", numChecksumbytes=" + totalChecksumBytes()); } } // Cacheable implementation @Override public int getSerializedLength() { if (buf != null) { // Include extra bytes for block metadata. return this.buf.limit() + BLOCK_METADATA_SPACE; } return 0; } // Cacheable implementation @Override public void serialize(ByteBuffer destination) { // BE CAREFUL!! There is a custom version of this serialization over in BucketCache#doDrain. // Make sure any changes in here are reflected over there. this.buf.get(destination, 0, getSerializedLength() - BLOCK_METADATA_SPACE); destination = addMetaData(destination); // Make it ready for reading. flip sets position to zero and limit to current position which // is what we want if we do not want to serialize the block plus checksums if present plus // metadata. destination.flip(); } /** * For use by bucketcache. This exposes internals. */ public ByteBuffer getMetaData() { ByteBuffer bb = ByteBuffer.allocate(BLOCK_METADATA_SPACE); bb = addMetaData(bb); bb.flip(); return bb; } /** * Adds metadata at current position (position is moved forward). Does not flip or reset. * @return The passed destination with metadata added. */ private ByteBuffer addMetaData(final ByteBuffer destination) { destination.put(this.fileContext.isUseHBaseChecksum() ? (byte) 1 : (byte) 0); destination.putLong(this.offset); destination.putInt(this.nextBlockOnDiskSize); return destination; } // Cacheable implementation @Override public CacheableDeserializer getDeserializer() { return HFileBlock.BLOCK_DESERIALIZER; } @Override public int hashCode() { int result = 1; result = result * 31 + blockType.hashCode(); result = result * 31 + nextBlockOnDiskSize; result = result * 31 + (int) (offset ^ (offset >>> 32)); result = result * 31 + onDiskSizeWithoutHeader; result = result * 31 + (int) (prevBlockOffset ^ (prevBlockOffset >>> 32)); result = result * 31 + uncompressedSizeWithoutHeader; result = result * 31 + buf.hashCode(); return result; } @Override public boolean equals(Object comparison) { if (this == comparison) { return true; } if (comparison == null) { return false; } if (comparison.getClass() != this.getClass()) { return false; } HFileBlock castedComparison = (HFileBlock) comparison; if (castedComparison.blockType != this.blockType) { return false; } if (castedComparison.nextBlockOnDiskSize != this.nextBlockOnDiskSize) { return false; } // Offset is important. Needed when we have to remake cachekey when block is returned to cache. if (castedComparison.offset != this.offset) { return false; } if (castedComparison.onDiskSizeWithoutHeader != this.onDiskSizeWithoutHeader) { return false; } if (castedComparison.prevBlockOffset != this.prevBlockOffset) { return false; } if (castedComparison.uncompressedSizeWithoutHeader != this.uncompressedSizeWithoutHeader) { return false; } if (ByteBuff.compareTo(this.buf, 0, this.buf.limit(), castedComparison.buf, 0, castedComparison.buf.limit()) != 0) { return false; } return true; } DataBlockEncoding getDataBlockEncoding() { if (blockType == BlockType.ENCODED_DATA) { return DataBlockEncoding.getEncodingById(getDataBlockEncodingId()); } return DataBlockEncoding.NONE; } @VisibleForTesting byte getChecksumType() { return this.fileContext.getChecksumType().getCode(); } int getBytesPerChecksum() { return this.fileContext.getBytesPerChecksum(); } /** @return the size of data on disk + header. Excludes checksum. */ @VisibleForTesting int getOnDiskDataSizeWithHeader() { return this.onDiskDataSizeWithHeader; } /** * Calculate the number of bytes required to store all the checksums * for this block. Each checksum value is a 4 byte integer. */ int totalChecksumBytes() { // If the hfile block has minorVersion 0, then there are no checksum // data to validate. Similarly, a zero value in this.bytesPerChecksum // indicates that cached blocks do not have checksum data because // checksums were already validated when the block was read from disk. if (!fileContext.isUseHBaseChecksum() || this.fileContext.getBytesPerChecksum() == 0) { return 0; } return (int) ChecksumUtil.numBytes(onDiskDataSizeWithHeader, this.fileContext.getBytesPerChecksum()); } /** * Returns the size of this block header. */ public int headerSize() { return headerSize(this.fileContext.isUseHBaseChecksum()); } /** * Maps a minor version to the size of the header. */ public static int headerSize(boolean usesHBaseChecksum) { return usesHBaseChecksum? HConstants.HFILEBLOCK_HEADER_SIZE: HConstants.HFILEBLOCK_HEADER_SIZE_NO_CHECKSUM; } /** * Return the appropriate DUMMY_HEADER for the minor version */ @VisibleForTesting // TODO: Why is this in here? byte[] getDummyHeaderForVersion() { return getDummyHeaderForVersion(this.fileContext.isUseHBaseChecksum()); } /** * Return the appropriate DUMMY_HEADER for the minor version */ static private byte[] getDummyHeaderForVersion(boolean usesHBaseChecksum) { return usesHBaseChecksum? HConstants.HFILEBLOCK_DUMMY_HEADER: DUMMY_HEADER_NO_CHECKSUM; } /** * @return This HFileBlocks fileContext which will a derivative of the * fileContext for the file from which this block's data was originally read. */ HFileContext getHFileContext() { return this.fileContext; } @Override public MemoryType getMemoryType() { return this.memType; } /** * @return true if this block is backed by a shared memory area(such as that of a BucketCache). */ boolean usesSharedMemory() { return this.memType == MemoryType.SHARED; } /** * Convert the contents of the block header into a human readable string. * This is mostly helpful for debugging. This assumes that the block * has minor version > 0. */ @VisibleForTesting static String toStringHeader(ByteBuff buf) throws IOException { byte[] magicBuf = new byte[Math.min(buf.limit() - buf.position(), BlockType.MAGIC_LENGTH)]; buf.get(magicBuf); BlockType bt = BlockType.parse(magicBuf, 0, BlockType.MAGIC_LENGTH); int compressedBlockSizeNoHeader = buf.getInt(); int uncompressedBlockSizeNoHeader = buf.getInt(); long prevBlockOffset = buf.getLong(); byte cksumtype = buf.get(); long bytesPerChecksum = buf.getInt(); long onDiskDataSizeWithHeader = buf.getInt(); return " Header dump: magic: " + Bytes.toString(magicBuf) + " blockType " + bt + " compressedBlockSizeNoHeader " + compressedBlockSizeNoHeader + " uncompressedBlockSizeNoHeader " + uncompressedBlockSizeNoHeader + " prevBlockOffset " + prevBlockOffset + " checksumType " + ChecksumType.codeToType(cksumtype) + " bytesPerChecksum " + bytesPerChecksum + " onDiskDataSizeWithHeader " + onDiskDataSizeWithHeader; } public HFileBlock deepClone() { return new HFileBlock(this, true); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy