org.apache.hadoop.hbase.io.hfile.NoOpIndexBlockEncoder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of hbase-server Show documentation
Show all versions of hbase-server Show documentation
Server functionality for HBase
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.io.hfile;
import static org.apache.hadoop.hbase.io.hfile.HFileBlockIndex.MID_KEY_METADATA_SIZE;
import static org.apache.hadoop.hbase.io.hfile.HFileBlockIndex.SECONDARY_INDEX_ENTRY_OVERHEAD;
import java.io.DataInput;
import java.io.DataInputStream;
import java.io.DataOutput;
import java.io.IOException;
import java.util.concurrent.atomic.AtomicReference;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellComparator;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.io.encoding.DataBlockEncoding;
import org.apache.hadoop.hbase.io.encoding.IndexBlockEncoding;
import org.apache.hadoop.hbase.nio.ByteBuff;
import org.apache.hadoop.hbase.regionserver.KeyValueScanner;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.hbase.util.ClassSize;
import org.apache.yetus.audience.InterfaceAudience;
/**
* Does not perform any kind of encoding/decoding.
*/
@InterfaceAudience.Private
public class NoOpIndexBlockEncoder implements HFileIndexBlockEncoder {
public static final NoOpIndexBlockEncoder INSTANCE = new NoOpIndexBlockEncoder();
/** Cannot be instantiated. Use {@link #INSTANCE} instead. */
private NoOpIndexBlockEncoder() {
}
@Override
public void saveMetadata(HFile.Writer writer) {
}
@Override
public void encode(BlockIndexChunk blockIndexChunk, boolean rootIndexBlock, DataOutput out)
throws IOException {
if (rootIndexBlock) {
writeRoot(blockIndexChunk, out);
} else {
writeNonRoot(blockIndexChunk, out);
}
}
/**
* Writes the block index chunk in the non-root index block format. This format contains the
* number of entries, an index of integer offsets for quick binary search on variable-length
* records, and tuples of block offset, on-disk block size, and the first key for each entry.
*/
private void writeNonRoot(BlockIndexChunk blockIndexChunk, DataOutput out) throws IOException {
// The number of entries in the block.
out.writeInt(blockIndexChunk.getNumEntries());
if (
blockIndexChunk.getSecondaryIndexOffsetMarks().size() != blockIndexChunk.getBlockKeys().size()
) {
throw new IOException("Corrupted block index chunk writer: "
+ blockIndexChunk.getBlockKeys().size() + " entries but "
+ blockIndexChunk.getSecondaryIndexOffsetMarks().size() + " secondary index items");
}
// For each entry, write a "secondary index" of relative offsets to the
// entries from the end of the secondary index. This works, because at
// read time we read the number of entries and know where the secondary
// index ends.
for (int currentSecondaryIndex : blockIndexChunk.getSecondaryIndexOffsetMarks())
out.writeInt(currentSecondaryIndex);
// We include one other element in the secondary index to calculate the
// size of each entry more easily by subtracting secondary index elements.
out.writeInt(blockIndexChunk.getCurTotalNonRootEntrySize());
for (int i = 0; i < blockIndexChunk.getNumEntries(); ++i) {
out.writeLong(blockIndexChunk.getBlockOffset(i));
out.writeInt(blockIndexChunk.getOnDiskDataSize(i));
out.write(blockIndexChunk.getBlockKey(i));
}
}
/**
* Writes this chunk into the given output stream in the root block index format. This format is
* similar to the {@link HFile} version 1 block index format, except that we store on-disk size of
* the block instead of its uncompressed size.
* @param out the data output stream to write the block index to. Typically a stream writing into
* an {@link HFile} block.
*/
private void writeRoot(BlockIndexChunk blockIndexChunk, DataOutput out) throws IOException {
for (int i = 0; i < blockIndexChunk.getNumEntries(); ++i) {
out.writeLong(blockIndexChunk.getBlockOffset(i));
out.writeInt(blockIndexChunk.getOnDiskDataSize(i));
Bytes.writeByteArray(out, blockIndexChunk.getBlockKey(i));
}
}
@Override
public IndexBlockEncoding getIndexBlockEncoding() {
return IndexBlockEncoding.NONE;
}
@Override
public EncodedSeeker createSeeker() {
return new NoOpEncodedSeeker();
}
@Override
public String toString() {
return getClass().getSimpleName();
}
protected static class NoOpEncodedSeeker implements EncodedSeeker {
protected long[] blockOffsets;
protected int[] blockDataSizes;
protected int rootCount = 0;
// Mid-key metadata.
protected long midLeafBlockOffset = -1;
protected int midLeafBlockOnDiskSize = -1;
protected int midKeyEntry = -1;
private Cell[] blockKeys;
private CellComparator comparator;
protected int searchTreeLevel;
/** Pre-computed mid-key */
private AtomicReference midKey = new AtomicReference<>();
@Override
public long heapSize() {
long heapSize = ClassSize.align(ClassSize.OBJECT);
// Mid-key metadata.
heapSize += MID_KEY_METADATA_SIZE;
if (blockOffsets != null) {
heapSize += ClassSize.align(ClassSize.ARRAY + blockOffsets.length * Bytes.SIZEOF_LONG);
}
if (blockDataSizes != null) {
heapSize += ClassSize.align(ClassSize.ARRAY + blockDataSizes.length * Bytes.SIZEOF_INT);
}
if (blockKeys != null) {
heapSize += ClassSize.REFERENCE;
// Adding array + references overhead
heapSize += ClassSize.align(ClassSize.ARRAY + blockKeys.length * ClassSize.REFERENCE);
// Adding blockKeys
for (Cell key : blockKeys) {
heapSize += ClassSize.align(key.heapSize());
}
}
// Add comparator and the midkey atomicreference
heapSize += 2 * ClassSize.REFERENCE;
// Add rootCount and searchTreeLevel
heapSize += 2 * Bytes.SIZEOF_INT;
return ClassSize.align(heapSize);
}
@Override
public boolean isEmpty() {
return blockKeys.length == 0;
}
@Override
public Cell getRootBlockKey(int i) {
return blockKeys[i];
}
@Override
public int getRootBlockCount() {
return rootCount;
}
@Override
public void initRootIndex(HFileBlock blk, int numEntries, CellComparator comparator,
int treeLevel) throws IOException {
this.comparator = comparator;
this.searchTreeLevel = treeLevel;
init(blk, numEntries);
}
private void init(HFileBlock blk, int numEntries) throws IOException {
DataInputStream in = readRootIndex(blk, numEntries);
// after reading the root index the checksum bytes have to
// be subtracted to know if the mid key exists.
int checkSumBytes = blk.totalChecksumBytes();
if ((in.available() - checkSumBytes) < MID_KEY_METADATA_SIZE) {
// No mid-key metadata available.
return;
}
midLeafBlockOffset = in.readLong();
midLeafBlockOnDiskSize = in.readInt();
midKeyEntry = in.readInt();
}
private DataInputStream readRootIndex(HFileBlock blk, final int numEntries) throws IOException {
DataInputStream in = blk.getByteStream();
readRootIndex(in, numEntries);
return in;
}
private void readRootIndex(DataInput in, final int numEntries) throws IOException {
blockOffsets = new long[numEntries];
initialize(numEntries);
blockDataSizes = new int[numEntries];
// If index size is zero, no index was written.
if (numEntries > 0) {
for (int i = 0; i < numEntries; ++i) {
long offset = in.readLong();
int dataSize = in.readInt();
byte[] key = Bytes.readByteArray(in);
add(key, offset, dataSize);
}
}
}
private void initialize(int numEntries) {
blockKeys = new Cell[numEntries];
}
private void add(final byte[] key, final long offset, final int dataSize) {
blockOffsets[rootCount] = offset;
// Create the blockKeys as Cells once when the reader is opened
blockKeys[rootCount] = new KeyValue.KeyOnlyKeyValue(key, 0, key.length);
blockDataSizes[rootCount] = dataSize;
rootCount++;
}
@Override
public Cell midkey(HFile.CachingBlockReader cachingBlockReader) throws IOException {
if (rootCount == 0) throw new IOException("HFile empty");
Cell targetMidKey = this.midKey.get();
if (targetMidKey != null) {
return targetMidKey;
}
if (midLeafBlockOffset >= 0) {
if (cachingBlockReader == null) {
throw new IOException(
"Have to read the middle leaf block but " + "no block reader available");
}
// Caching, using pread, assuming this is not a compaction.
HFileBlock midLeafBlock = cachingBlockReader.readBlock(midLeafBlockOffset,
midLeafBlockOnDiskSize, true, true, false, true, BlockType.LEAF_INDEX, null);
try {
ByteBuff b = midLeafBlock.getBufferWithoutHeader();
int numDataBlocks = b.getIntAfterPosition(0);
int keyRelOffset = b.getIntAfterPosition(Bytes.SIZEOF_INT * (midKeyEntry + 1));
int keyLen = b.getIntAfterPosition(Bytes.SIZEOF_INT * (midKeyEntry + 2)) - keyRelOffset
- SECONDARY_INDEX_ENTRY_OVERHEAD;
int keyOffset =
Bytes.SIZEOF_INT * (numDataBlocks + 2) + keyRelOffset + SECONDARY_INDEX_ENTRY_OVERHEAD;
byte[] bytes = b.toBytes(keyOffset, keyLen);
targetMidKey = new KeyValue.KeyOnlyKeyValue(bytes, 0, bytes.length);
} finally {
midLeafBlock.release();
}
} else {
// The middle of the root-level index.
targetMidKey = blockKeys[rootCount / 2];
}
this.midKey.set(targetMidKey);
return targetMidKey;
}
@Override
public BlockWithScanInfo loadDataBlockWithScanInfo(Cell key, HFileBlock currentBlock,
boolean cacheBlocks, boolean pread, boolean isCompaction,
DataBlockEncoding expectedDataBlockEncoding, HFile.CachingBlockReader cachingBlockReader)
throws IOException {
int rootLevelIndex = rootBlockContainingKey(key);
if (rootLevelIndex < 0 || rootLevelIndex >= blockOffsets.length) {
return null;
}
// the next indexed key
Cell nextIndexedKey = null;
// Read the next-level (intermediate or leaf) index block.
long currentOffset = blockOffsets[rootLevelIndex];
int currentOnDiskSize = blockDataSizes[rootLevelIndex];
if (rootLevelIndex < blockKeys.length - 1) {
nextIndexedKey = blockKeys[rootLevelIndex + 1];
} else {
nextIndexedKey = KeyValueScanner.NO_NEXT_INDEXED_KEY;
}
int lookupLevel = 1; // How many levels deep we are in our lookup.
int index = -1;
HFileBlock block = null;
KeyValue.KeyOnlyKeyValue tmpNextIndexKV = new KeyValue.KeyOnlyKeyValue();
while (true) {
try {
// Must initialize it with null here, because if don't and once an exception happen in
// readBlock, then we'll release the previous assigned block twice in the finally block.
// (See HBASE-22422)
block = null;
if (currentBlock != null && currentBlock.getOffset() == currentOffset) {
// Avoid reading the same block again, even with caching turned off.
// This is crucial for compaction-type workload which might have
// caching turned off. This is like a one-block cache inside the
// scanner.
block = currentBlock;
} else {
// Call HFile's caching block reader API. We always cache index
// blocks, otherwise we might get terrible performance.
boolean shouldCache = cacheBlocks || (lookupLevel < searchTreeLevel);
BlockType expectedBlockType;
if (lookupLevel < searchTreeLevel - 1) {
expectedBlockType = BlockType.INTERMEDIATE_INDEX;
} else if (lookupLevel == searchTreeLevel - 1) {
expectedBlockType = BlockType.LEAF_INDEX;
} else {
// this also accounts for ENCODED_DATA
expectedBlockType = BlockType.DATA;
}
block = cachingBlockReader.readBlock(currentOffset, currentOnDiskSize, shouldCache,
pread, isCompaction, true, expectedBlockType, expectedDataBlockEncoding);
}
if (block == null) {
throw new IOException("Failed to read block at offset " + currentOffset
+ ", onDiskSize=" + currentOnDiskSize);
}
// Found a data block, break the loop and check our level in the tree.
if (block.getBlockType().isData()) {
break;
}
// Not a data block. This must be a leaf-level or intermediate-level
// index block. We don't allow going deeper than searchTreeLevel.
if (++lookupLevel > searchTreeLevel) {
throw new IOException("Search Tree Level overflow: lookupLevel=" + lookupLevel
+ ", searchTreeLevel=" + searchTreeLevel);
}
// Locate the entry corresponding to the given key in the non-root
// (leaf or intermediate-level) index block.
ByteBuff buffer = block.getBufferWithoutHeader();
index = HFileBlockIndex.BlockIndexReader.locateNonRootIndexEntry(buffer, key, comparator);
if (index == -1) {
// This has to be changed
// For now change this to key value
throw new IOException("The key " + CellUtil.getCellKeyAsString(key) + " is before the"
+ " first key of the non-root index block " + block);
}
currentOffset = buffer.getLong();
currentOnDiskSize = buffer.getInt();
// Only update next indexed key if there is a next indexed key in the current level
byte[] nonRootIndexedKey = getNonRootIndexedKey(buffer, index + 1);
if (nonRootIndexedKey != null) {
tmpNextIndexKV.setKey(nonRootIndexedKey, 0, nonRootIndexedKey.length);
nextIndexedKey = tmpNextIndexKV;
}
} finally {
if (block != null && !block.getBlockType().isData()) {
// Release the block immediately if it is not the data block
block.release();
}
}
}
if (lookupLevel != searchTreeLevel) {
assert block.getBlockType().isData();
// Though we have retrieved a data block we have found an issue
// in the retrieved data block. Hence returned the block so that
// the ref count can be decremented
if (block != null) {
block.release();
}
throw new IOException("Reached a data block at level " + lookupLevel
+ " but the number of levels is " + searchTreeLevel);
}
// set the next indexed key for the current block.
return new BlockWithScanInfo(block, nextIndexedKey);
}
@Override
public int rootBlockContainingKey(Cell key) {
// Here the comparator should not be null as this happens for the root-level block
int pos = Bytes.binarySearch(blockKeys, key, comparator);
// pos is between -(blockKeys.length + 1) to blockKeys.length - 1, see
// binarySearch's javadoc.
if (pos >= 0) {
// This means this is an exact match with an element of blockKeys.
assert pos < blockKeys.length;
return pos;
}
// Otherwise, pos = -(i + 1), where blockKeys[i - 1] < key < blockKeys[i],
// and i is in [0, blockKeys.length]. We are returning j = i - 1 such that
// blockKeys[j] <= key < blockKeys[j + 1]. In particular, j = -1 if
// key < blockKeys[0], meaning the file does not contain the given key.
int i = -pos - 1;
assert 0 <= i && i <= blockKeys.length;
return i - 1;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("size=" + rootCount).append("\n");
for (int i = 0; i < rootCount; i++) {
sb.append("key=").append((blockKeys[i])).append("\n offset=").append(blockOffsets[i])
.append(", dataSize=" + blockDataSizes[i]).append("\n");
}
return sb.toString();
}
/**
* The indexed key at the ith position in the nonRootIndex. The position starts at 0.
* @param i the ith position
* @return The indexed key at the ith position in the nonRootIndex.
*/
protected byte[] getNonRootIndexedKey(ByteBuff nonRootIndex, int i) {
int numEntries = nonRootIndex.getInt(0);
if (i < 0 || i >= numEntries) {
return null;
}
// Entries start after the number of entries and the secondary index.
// The secondary index takes numEntries + 1 ints.
int entriesOffset = Bytes.SIZEOF_INT * (numEntries + 2);
// Targetkey's offset relative to the end of secondary index
int targetKeyRelOffset = nonRootIndex.getInt(Bytes.SIZEOF_INT * (i + 1));
// The offset of the target key in the blockIndex buffer
int targetKeyOffset = entriesOffset // Skip secondary index
+ targetKeyRelOffset // Skip all entries until mid
+ SECONDARY_INDEX_ENTRY_OVERHEAD; // Skip offset and on-disk-size
// We subtract the two consecutive secondary index elements, which
// gives us the size of the whole (offset, onDiskSize, key) tuple. We
// then need to subtract the overhead of offset and onDiskSize.
int targetKeyLength = nonRootIndex.getInt(Bytes.SIZEOF_INT * (i + 2)) - targetKeyRelOffset
- SECONDARY_INDEX_ENTRY_OVERHEAD;
// TODO check whether we can make BB backed Cell here? So can avoid bytes copy.
return nonRootIndex.toBytes(targetKeyOffset, targetKeyLength);
}
}
}
|