Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hbase.spark
import java.io.ByteArrayInputStream
import java.nio.ByteBuffer
import java.sql.Timestamp
import java.util
import java.util.HashMap
import org.apache.avro.SchemaBuilder.BaseFieldTypeBuilder
import org.apache.avro.SchemaBuilder.BaseTypeBuilder
import org.apache.avro.SchemaBuilder.FieldAssembler
import org.apache.avro.SchemaBuilder.FieldDefault
import org.apache.avro.SchemaBuilder.RecordBuilder
import org.apache.avro.io._
import org.apache.commons.io.output.ByteArrayOutputStream
import org.apache.hadoop.hbase.classification.InterfaceAudience;
import org.apache.hadoop.hbase.util.Bytes
import scala.collection.JavaConversions._
import org.apache.avro.{SchemaBuilder, Schema}
import org.apache.avro.Schema.Type._
import org.apache.avro.generic.GenericData.{Record, Fixed}
import org.apache.avro.generic.{GenericDatumReader, GenericDatumWriter, GenericData, GenericRecord}
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
import scala.collection.immutable.Map
@InterfaceAudience.Private
abstract class AvroException(msg: String) extends Exception(msg)
@InterfaceAudience.Private
case class SchemaConversionException(msg: String) extends AvroException(msg)
/***
* On top level, the converters provide three high level interface.
* 1. toSqlType: This function takes an avro schema and returns a sql schema.
* 2. createConverterToSQL: Returns a function that is used to convert avro types to their
* corresponding sparkSQL representations.
* 3. convertTypeToAvro: This function constructs converter function for a given sparkSQL
* datatype. This is used in writing Avro records out to disk
*/
@InterfaceAudience.Private
object SchemaConverters {
case class SchemaType(dataType: DataType, nullable: Boolean)
/**
* This function takes an avro schema and returns a sql schema.
*/
def toSqlType(avroSchema: Schema): SchemaType = {
avroSchema.getType match {
case INT => SchemaType(IntegerType, nullable = false)
case STRING => SchemaType(StringType, nullable = false)
case BOOLEAN => SchemaType(BooleanType, nullable = false)
case BYTES => SchemaType(BinaryType, nullable = false)
case DOUBLE => SchemaType(DoubleType, nullable = false)
case FLOAT => SchemaType(FloatType, nullable = false)
case LONG => SchemaType(LongType, nullable = false)
case FIXED => SchemaType(BinaryType, nullable = false)
case ENUM => SchemaType(StringType, nullable = false)
case RECORD =>
val fields = avroSchema.getFields.map { f =>
val schemaType = toSqlType(f.schema())
StructField(f.name, schemaType.dataType, schemaType.nullable)
}
SchemaType(StructType(fields), nullable = false)
case ARRAY =>
val schemaType = toSqlType(avroSchema.getElementType)
SchemaType(
ArrayType(schemaType.dataType, containsNull = schemaType.nullable),
nullable = false)
case MAP =>
val schemaType = toSqlType(avroSchema.getValueType)
SchemaType(
MapType(StringType, schemaType.dataType, valueContainsNull = schemaType.nullable),
nullable = false)
case UNION =>
if (avroSchema.getTypes.exists(_.getType == NULL)) {
// In case of a union with null, eliminate it and make a recursive call
val remainingUnionTypes = avroSchema.getTypes.filterNot(_.getType == NULL)
if (remainingUnionTypes.size == 1) {
toSqlType(remainingUnionTypes.get(0)).copy(nullable = true)
} else {
toSqlType(Schema.createUnion(remainingUnionTypes)).copy(nullable = true)
}
} else avroSchema.getTypes.map(_.getType) match {
case Seq(t1, t2) if Set(t1, t2) == Set(INT, LONG) =>
SchemaType(LongType, nullable = false)
case Seq(t1, t2) if Set(t1, t2) == Set(FLOAT, DOUBLE) =>
SchemaType(DoubleType, nullable = false)
case other => throw new SchemaConversionException(
s"This mix of union types is not supported: $other")
}
case other => throw new SchemaConversionException(s"Unsupported type $other")
}
}
/**
* This function converts sparkSQL StructType into avro schema. This method uses two other
* converter methods in order to do the conversion.
*/
private def convertStructToAvro[T](
structType: StructType,
schemaBuilder: RecordBuilder[T],
recordNamespace: String): T = {
val fieldsAssembler: FieldAssembler[T] = schemaBuilder.fields()
structType.fields.foreach { field =>
val newField = fieldsAssembler.name(field.name).`type`()
if (field.nullable) {
convertFieldTypeToAvro(field.dataType, newField.nullable(), field.name, recordNamespace)
.noDefault
} else {
convertFieldTypeToAvro(field.dataType, newField, field.name, recordNamespace)
.noDefault
}
}
fieldsAssembler.endRecord()
}
/**
* Returns a function that is used to convert avro types to their
* corresponding sparkSQL representations.
*/
def createConverterToSQL(schema: Schema): Any => Any = {
schema.getType match {
// Avro strings are in Utf8, so we have to call toString on them
case STRING | ENUM => (item: Any) => if (item == null) null else item.toString
case INT | BOOLEAN | DOUBLE | FLOAT | LONG => identity
// Byte arrays are reused by avro, so we have to make a copy of them.
case FIXED => (item: Any) => if (item == null) {
null
} else {
item.asInstanceOf[Fixed].bytes().clone()
}
case BYTES => (item: Any) => if (item == null) {
null
} else {
val bytes = item.asInstanceOf[ByteBuffer]
val javaBytes = new Array[Byte](bytes.remaining)
bytes.get(javaBytes)
javaBytes
}
case RECORD =>
val fieldConverters = schema.getFields.map(f => createConverterToSQL(f.schema))
(item: Any) => if (item == null) {
null
} else {
val record = item.asInstanceOf[GenericRecord]
val converted = new Array[Any](fieldConverters.size)
var idx = 0
while (idx < fieldConverters.size) {
converted(idx) = fieldConverters.apply(idx)(record.get(idx))
idx += 1
}
Row.fromSeq(converted.toSeq)
}
case ARRAY =>
val elementConverter = createConverterToSQL(schema.getElementType)
(item: Any) => if (item == null) {
null
} else {
try {
item.asInstanceOf[GenericData.Array[Any]].map(elementConverter)
} catch {
case e: Throwable =>
item.asInstanceOf[util.ArrayList[Any]].map(elementConverter)
}
}
case MAP =>
val valueConverter = createConverterToSQL(schema.getValueType)
(item: Any) => if (item == null) {
null
} else {
item.asInstanceOf[HashMap[Any, Any]].map(x => (x._1.toString, valueConverter(x._2))).toMap
}
case UNION =>
if (schema.getTypes.exists(_.getType == NULL)) {
val remainingUnionTypes = schema.getTypes.filterNot(_.getType == NULL)
if (remainingUnionTypes.size == 1) {
createConverterToSQL(remainingUnionTypes.get(0))
} else {
createConverterToSQL(Schema.createUnion(remainingUnionTypes))
}
} else schema.getTypes.map(_.getType) match {
case Seq(t1, t2) if Set(t1, t2) == Set(INT, LONG) =>
(item: Any) => {
item match {
case l: Long => l
case i: Int => i.toLong
case null => null
}
}
case Seq(t1, t2) if Set(t1, t2) == Set(FLOAT, DOUBLE) =>
(item: Any) => {
item match {
case d: Double => d
case f: Float => f.toDouble
case null => null
}
}
case other => throw new SchemaConversionException(
s"This mix of union types is not supported (see README): $other")
}
case other => throw new SchemaConversionException(s"invalid avro type: $other")
}
}
/**
* This function is used to convert some sparkSQL type to avro type. Note that this function won't
* be used to construct fields of avro record (convertFieldTypeToAvro is used for that).
*/
private def convertTypeToAvro[T](
dataType: DataType,
schemaBuilder: BaseTypeBuilder[T],
structName: String,
recordNamespace: String): T = {
dataType match {
case ByteType => schemaBuilder.intType()
case ShortType => schemaBuilder.intType()
case IntegerType => schemaBuilder.intType()
case LongType => schemaBuilder.longType()
case FloatType => schemaBuilder.floatType()
case DoubleType => schemaBuilder.doubleType()
case _: DecimalType => schemaBuilder.stringType()
case StringType => schemaBuilder.stringType()
case BinaryType => schemaBuilder.bytesType()
case BooleanType => schemaBuilder.booleanType()
case TimestampType => schemaBuilder.longType()
case ArrayType(elementType, _) =>
val builder = getSchemaBuilder(dataType.asInstanceOf[ArrayType].containsNull)
val elementSchema = convertTypeToAvro(elementType, builder, structName, recordNamespace)
schemaBuilder.array().items(elementSchema)
case MapType(StringType, valueType, _) =>
val builder = getSchemaBuilder(dataType.asInstanceOf[MapType].valueContainsNull)
val valueSchema = convertTypeToAvro(valueType, builder, structName, recordNamespace)
schemaBuilder.map().values(valueSchema)
case structType: StructType =>
convertStructToAvro(
structType,
schemaBuilder.record(structName).namespace(recordNamespace),
recordNamespace)
case other => throw new IllegalArgumentException(s"Unexpected type $dataType.")
}
}
/**
* This function is used to construct fields of the avro record, where schema of the field is
* specified by avro representation of dataType. Since builders for record fields are different
* from those for everything else, we have to use a separate method.
*/
private def convertFieldTypeToAvro[T](
dataType: DataType,
newFieldBuilder: BaseFieldTypeBuilder[T],
structName: String,
recordNamespace: String): FieldDefault[T, _] = {
dataType match {
case ByteType => newFieldBuilder.intType()
case ShortType => newFieldBuilder.intType()
case IntegerType => newFieldBuilder.intType()
case LongType => newFieldBuilder.longType()
case FloatType => newFieldBuilder.floatType()
case DoubleType => newFieldBuilder.doubleType()
case _: DecimalType => newFieldBuilder.stringType()
case StringType => newFieldBuilder.stringType()
case BinaryType => newFieldBuilder.bytesType()
case BooleanType => newFieldBuilder.booleanType()
case TimestampType => newFieldBuilder.longType()
case ArrayType(elementType, _) =>
val builder = getSchemaBuilder(dataType.asInstanceOf[ArrayType].containsNull)
val elementSchema = convertTypeToAvro(elementType, builder, structName, recordNamespace)
newFieldBuilder.array().items(elementSchema)
case MapType(StringType, valueType, _) =>
val builder = getSchemaBuilder(dataType.asInstanceOf[MapType].valueContainsNull)
val valueSchema = convertTypeToAvro(valueType, builder, structName, recordNamespace)
newFieldBuilder.map().values(valueSchema)
case structType: StructType =>
convertStructToAvro(
structType,
newFieldBuilder.record(structName).namespace(recordNamespace),
recordNamespace)
case other => throw new IllegalArgumentException(s"Unexpected type $dataType.")
}
}
private def getSchemaBuilder(isNullable: Boolean): BaseTypeBuilder[Schema] = {
if (isNullable) {
SchemaBuilder.builder().nullable()
} else {
SchemaBuilder.builder()
}
}
/**
* This function constructs converter function for a given sparkSQL datatype. This is used in
* writing Avro records out to disk
*/
def createConverterToAvro(
dataType: DataType,
structName: String,
recordNamespace: String): (Any) => Any = {
dataType match {
case BinaryType => (item: Any) => item match {
case null => null
case bytes: Array[Byte] => ByteBuffer.wrap(bytes)
}
case ByteType | ShortType | IntegerType | LongType |
FloatType | DoubleType | StringType | BooleanType => identity
case _: DecimalType => (item: Any) => if (item == null) null else item.toString
case TimestampType => (item: Any) =>
if (item == null) null else item.asInstanceOf[Timestamp].getTime
case ArrayType(elementType, _) =>
val elementConverter = createConverterToAvro(elementType, structName, recordNamespace)
(item: Any) => {
if (item == null) {
null
} else {
val sourceArray = item.asInstanceOf[Seq[Any]]
val sourceArraySize = sourceArray.size
val targetArray = new util.ArrayList[Any](sourceArraySize)
var idx = 0
while (idx < sourceArraySize) {
targetArray.add(elementConverter(sourceArray(idx)))
idx += 1
}
targetArray
}
}
case MapType(StringType, valueType, _) =>
val valueConverter = createConverterToAvro(valueType, structName, recordNamespace)
(item: Any) => {
if (item == null) {
null
} else {
val javaMap = new HashMap[String, Any]()
item.asInstanceOf[Map[String, Any]].foreach { case (key, value) =>
javaMap.put(key, valueConverter(value))
}
javaMap
}
}
case structType: StructType =>
val builder = SchemaBuilder.record(structName).namespace(recordNamespace)
val schema: Schema = SchemaConverters.convertStructToAvro(
structType, builder, recordNamespace)
val fieldConverters = structType.fields.map(field =>
createConverterToAvro(field.dataType, field.name, recordNamespace))
(item: Any) => {
if (item == null) {
null
} else {
val record = new Record(schema)
val convertersIterator = fieldConverters.iterator
val fieldNamesIterator = dataType.asInstanceOf[StructType].fieldNames.iterator
val rowIterator = item.asInstanceOf[Row].toSeq.iterator
while (convertersIterator.hasNext) {
val converter = convertersIterator.next()
record.put(fieldNamesIterator.next(), converter(rowIterator.next()))
}
record
}
}
}
}
}
@InterfaceAudience.Private
object AvroSerdes {
// We only handle top level is record or primary type now
def serialize(input: Any, schema: Schema): Array[Byte]= {
schema.getType match {
case BOOLEAN => Bytes.toBytes(input.asInstanceOf[Boolean])
case BYTES | FIXED=> input.asInstanceOf[Array[Byte]]
case DOUBLE => Bytes.toBytes(input.asInstanceOf[Double])
case FLOAT => Bytes.toBytes(input.asInstanceOf[Float])
case INT => Bytes.toBytes(input.asInstanceOf[Int])
case LONG => Bytes.toBytes(input.asInstanceOf[Long])
case STRING => Bytes.toBytes(input.asInstanceOf[String])
case RECORD =>
val gr = input.asInstanceOf[GenericRecord]
val writer2 = new GenericDatumWriter[GenericRecord](schema)
val bao2 = new ByteArrayOutputStream()
val encoder2: BinaryEncoder = EncoderFactory.get().directBinaryEncoder(bao2, null)
writer2.write(gr, encoder2)
bao2.toByteArray()
case _ => throw new Exception(s"unsupported data type ${schema.getType}") //TODO
}
}
def deserialize(input: Array[Byte], schema: Schema): GenericRecord = {
val reader2: DatumReader[GenericRecord] = new GenericDatumReader[GenericRecord](schema)
val bai2 = new ByteArrayInputStream(input)
val decoder2: BinaryDecoder = DecoderFactory.get().directBinaryDecoder(bai2, null)
val gr2: GenericRecord = reader2.read(null, decoder2)
gr2
}
}