All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.hive.ql.optimizer.ConvertJoinMapJoin Maven / Gradle / Ivy

There is a newer version: 4.0.1
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.hive.ql.optimizer;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.Stack;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.hive.conf.HiveConf;
import org.apache.hadoop.hive.ql.exec.GroupByOperator;
import org.apache.hadoop.hive.ql.exec.JoinOperator;
import org.apache.hadoop.hive.ql.exec.MapJoinOperator;
import org.apache.hadoop.hive.ql.exec.MuxOperator;
import org.apache.hadoop.hive.ql.exec.Operator;
import org.apache.hadoop.hive.ql.exec.ReduceSinkOperator;
import org.apache.hadoop.hive.ql.lib.Node;
import org.apache.hadoop.hive.ql.lib.NodeProcessor;
import org.apache.hadoop.hive.ql.lib.NodeProcessorCtx;
import org.apache.hadoop.hive.ql.parse.OptimizeTezProcContext;
import org.apache.hadoop.hive.ql.parse.ParseContext;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.plan.ExprNodeColumnDesc;
import org.apache.hadoop.hive.ql.plan.ExprNodeDesc;
import org.apache.hadoop.hive.ql.plan.MapJoinDesc;
import org.apache.hadoop.hive.ql.plan.OpTraits;
import org.apache.hadoop.hive.ql.plan.OperatorDesc;
import org.apache.hadoop.hive.ql.plan.Statistics;

/**
 * ConvertJoinMapJoin is an optimization that replaces a common join
 * (aka shuffle join) with a map join (aka broadcast or fragment replicate
 * join when possible. Map joins have restrictions on which joins can be
 * converted (e.g.: full outer joins cannot be handled as map joins) as well
 * as memory restrictions (one side of the join has to fit into memory).
 */
public class ConvertJoinMapJoin implements NodeProcessor {

  static final private Log LOG = LogFactory.getLog(ConvertJoinMapJoin.class.getName());

  @Override
    /*
     * (non-Javadoc)
     * we should ideally not modify the tree we traverse.
     * However, since we need to walk the tree at any time when we modify the
     * operator, we might as well do it here.
     */
    public Object process(Node nd, Stack stack,
        NodeProcessorCtx procCtx, Object... nodeOutputs)
    throws SemanticException {

    OptimizeTezProcContext context = (OptimizeTezProcContext) procCtx;

    if (!context.conf.getBoolVar(HiveConf.ConfVars.HIVECONVERTJOIN)) {
      return null;
    }

    JoinOperator joinOp = (JoinOperator) nd;
    // if we have traits, and table info is present in the traits, we know the 
    // exact number of buckets. Else choose the largest number of estimated
    // reducers from the parent operators.
    int numBuckets = -1;
    int estimatedBuckets = -1;
    if (context.conf.getBoolVar(HiveConf.ConfVars.HIVE_CONVERT_JOIN_BUCKET_MAPJOIN_TEZ)) {
      for (OperatorparentOp : joinOp.getParentOperators()) {
        if (parentOp.getOpTraits().getNumBuckets() > 0) {
          numBuckets = (numBuckets < parentOp.getOpTraits().getNumBuckets()) ? 
              parentOp.getOpTraits().getNumBuckets() : numBuckets; 
        }

        if (parentOp instanceof ReduceSinkOperator) {
          ReduceSinkOperator rs = (ReduceSinkOperator)parentOp;
          estimatedBuckets = (estimatedBuckets < rs.getConf().getNumReducers()) ? 
              rs.getConf().getNumReducers() : estimatedBuckets;
        }
      }

      if (numBuckets <= 0) {
        numBuckets = estimatedBuckets;
        if (numBuckets <= 0) {
          numBuckets = 1;
        }
      }
    } else {
      numBuckets = 1;
    }
    LOG.info("Estimated number of buckets " + numBuckets);
    int mapJoinConversionPos = mapJoinConversionPos(joinOp, context, numBuckets);
    if (mapJoinConversionPos < 0) {
      // we cannot convert to bucket map join, we cannot convert to 
      // map join either based on the size
      return null;
    }

    if (context.conf.getBoolVar(HiveConf.ConfVars.HIVE_CONVERT_JOIN_BUCKET_MAPJOIN_TEZ)) {
      if (convertJoinBucketMapJoin(joinOp, context, mapJoinConversionPos)) {
        return null;
      }
    }

    LOG.info("Convert to non-bucketed map join");
    // check if we can convert to map join no bucket scaling.
    mapJoinConversionPos = mapJoinConversionPos(joinOp, context, 1);
    if (mapJoinConversionPos < 0) {
      return null;
    }

    MapJoinOperator mapJoinOp = convertJoinMapJoin(joinOp, context, mapJoinConversionPos);
    // map join operator by default has no bucket cols
    mapJoinOp.setOpTraits(new OpTraits(null, -1));
    // propagate this change till the next RS
    for (Operator childOp : mapJoinOp.getChildOperators()) {
      setAllChildrenTraitsToNull(childOp);
    }

    return null;
  }

  private void setAllChildrenTraitsToNull(Operator currentOp) {
    if (currentOp instanceof ReduceSinkOperator) {
      return;
    }
    currentOp.setOpTraits(new OpTraits(null, -1));
    for (Operator childOp : currentOp.getChildOperators()) {
      if ((childOp instanceof ReduceSinkOperator) || (childOp instanceof GroupByOperator)) {
        break;
      }
      setAllChildrenTraitsToNull(childOp);
    }
  }

  private boolean convertJoinBucketMapJoin(JoinOperator joinOp, OptimizeTezProcContext context, 
      int bigTablePosition) throws SemanticException {

    TezBucketJoinProcCtx tezBucketJoinProcCtx = new TezBucketJoinProcCtx(context.conf);

    if (!checkConvertJoinBucketMapJoin(joinOp, context, bigTablePosition, tezBucketJoinProcCtx)) {
      LOG.info("Check conversion to bucket map join failed.");
      return false;
    }

    MapJoinOperator mapJoinOp = 
      convertJoinMapJoin(joinOp, context, bigTablePosition);
    MapJoinDesc joinDesc = mapJoinOp.getConf();
    joinDesc.setBucketMapJoin(true);

    // we can set the traits for this join operator
    OpTraits opTraits = new OpTraits(joinOp.getOpTraits().getBucketColNames(),
        tezBucketJoinProcCtx.getNumBuckets());
    mapJoinOp.setOpTraits(opTraits);
    setNumberOfBucketsOnChildren(mapJoinOp);

    // Once the conversion is done, we can set the partitioner to bucket cols on the small table    
    Map bigTableBucketNumMapping = new HashMap();
    bigTableBucketNumMapping.put(joinDesc.getBigTableAlias(), tezBucketJoinProcCtx.getNumBuckets());
    joinDesc.setBigTableBucketNumMapping(bigTableBucketNumMapping);
    LOG.info("Setting legacy map join to " + (!tezBucketJoinProcCtx.isSubQuery()));
    joinDesc.setCustomBucketMapJoin(!tezBucketJoinProcCtx.isSubQuery());

    return true;
  }

  private void setNumberOfBucketsOnChildren(Operator currentOp) {
    int numBuckets = currentOp.getOpTraits().getNumBuckets();
    for (Operatorop : currentOp.getChildOperators()) {
      if (!(op instanceof ReduceSinkOperator) && !(op instanceof GroupByOperator)) {
        op.getOpTraits().setNumBuckets(numBuckets);
        setNumberOfBucketsOnChildren(op);
      }
    }
  }

  /*
   *  We perform the following checks to see if we can convert to a bucket map join
   *  1. If the parent reduce sink of the big table side has the same emit key cols as 
   *  its parent, we can create a bucket map join eliminating the reduce sink.
   *  2. If we have the table information, we can check the same way as in Mapreduce to 
   *  determine if we can perform a Bucket Map Join.
   */
  private boolean checkConvertJoinBucketMapJoin(JoinOperator joinOp, 
      OptimizeTezProcContext context, int bigTablePosition, 
      TezBucketJoinProcCtx tezBucketJoinProcCtx) throws SemanticException {
    // bail on mux-operator because mux operator masks the emit keys of the
    // constituent reduce sinks
    if (!(joinOp.getParentOperators().get(0) instanceof ReduceSinkOperator)) {
      LOG.info("Operator is " + joinOp.getParentOperators().get(0).getName() +
          ". Cannot convert to bucket map join");
      return false;
    }

    ReduceSinkOperator rs = (ReduceSinkOperator) joinOp.getParentOperators().get(bigTablePosition);
    /*
     * this is the case when the big table is a sub-query and is probably
     * already bucketed by the join column in say a group by operation 
     */
    List> colNames = rs.getParentOperators().get(0).getOpTraits().getBucketColNames();
    if ((colNames != null) && (colNames.isEmpty() == false)) {
      OperatorparentOfParent = rs.getParentOperators().get(0);
      for (ListlistBucketCols : parentOfParent.getOpTraits().getBucketColNames()) {
        // can happen if this operator does not carry forward the previous bucketing columns
        // for e.g. another join operator which does not carry one of the sides' key columns
        if (listBucketCols.isEmpty()) {
          continue;
        }
        int colCount = 0;
        // parent op is guaranteed to have a single list because it is a reduce sink
        for (String colName : rs.getOpTraits().getBucketColNames().get(0)) {
          // all columns need to be at least a subset of the parentOfParent's bucket cols
          ExprNodeDesc exprNodeDesc = rs.getColumnExprMap().get(colName);
          if (exprNodeDesc instanceof ExprNodeColumnDesc) {
            if (((ExprNodeColumnDesc)exprNodeDesc).getColumn().equals(listBucketCols.get(colCount))) {
              colCount++;
            } else {
              break;
            }
          }
          
          if (colCount == rs.getOpTraits().getBucketColNames().get(0).size()) {
            // all keys matched.
            int numBuckets = parentOfParent.getOpTraits().getNumBuckets();
            boolean isSubQuery = false;
            if (numBuckets < 0) {
              isSubQuery = true;
              numBuckets = rs.getConf().getNumReducers();
            }
            tezBucketJoinProcCtx.setNumBuckets(numBuckets);
            tezBucketJoinProcCtx.setIsSubQuery(isSubQuery);
            return true;
          }
        }
      }
      return false;
    }

    LOG.info("No info available to check for bucket map join. Cannot convert");
    return false;
  }

  public int mapJoinConversionPos(JoinOperator joinOp, OptimizeTezProcContext context, 
      int buckets) {
    Set bigTableCandidateSet = MapJoinProcessor.
      getBigTableCandidates(joinOp.getConf().getConds());

    long maxSize = context.conf.getLongVar(
        HiveConf.ConfVars.HIVECONVERTJOINNOCONDITIONALTASKTHRESHOLD);

    int bigTablePosition = -1;

    Statistics bigInputStat = null;
    long totalSize = 0;
    int pos = 0;

    // bigTableFound means we've encountered a table that's bigger than the
    // max. This table is either the the big table or we cannot convert.
    boolean bigTableFound = false;

    for (Operator parentOp : joinOp.getParentOperators()) {

      Statistics currInputStat = parentOp.getStatistics();
      if (currInputStat == null) {
        LOG.warn("Couldn't get statistics from: "+parentOp);
        return -1;
      }

      long inputSize = currInputStat.getDataSize();
      if ((bigInputStat == null) ||
          ((bigInputStat != null) &&
           (inputSize > bigInputStat.getDataSize()))) {

        if (bigTableFound) {
          // cannot convert to map join; we've already chosen a big table
          // on size and there's another one that's bigger.
          return -1;
        }

        if (inputSize/buckets > maxSize) {
          if (!bigTableCandidateSet.contains(pos)) {
            // can't use the current table as the big table, but it's too
            // big for the map side.
            return -1;
          }

          bigTableFound = true;
        }

        if (bigInputStat != null) {
          // we're replacing the current big table with a new one. Need
          // to count the current one as a map table then.
          totalSize += bigInputStat.getDataSize();
        }

        if (totalSize/buckets > maxSize) {
          // sum of small tables size in this join exceeds configured limit
          // hence cannot convert.
          return -1;
        }

        if (bigTableCandidateSet.contains(pos)) {
          bigTablePosition = pos;
          bigInputStat = currInputStat;
        }
      } else {
        totalSize += currInputStat.getDataSize();
        if (totalSize/buckets > maxSize) {
          // cannot hold all map tables in memory. Cannot convert.
          return -1;
        }
      }
      pos++;
    }

    return bigTablePosition;
  }

  /*
   * Once we have decided on the map join, the tree would transform from
   *
   *        |                   |
   *       Join               MapJoin
   *       / \                /   \
   *     RS   RS   --->     RS    TS (big table)
   *    /      \           /
   *   TS       TS        TS (small table)
   *
   * for tez.
   */

  public MapJoinOperator convertJoinMapJoin(JoinOperator joinOp, OptimizeTezProcContext context, 
      int bigTablePosition) throws SemanticException {
    // bail on mux operator because currently the mux operator masks the emit keys 
    // of the constituent reduce sinks.
    for (Operator parentOp : joinOp.getParentOperators()) {
      if (parentOp instanceof MuxOperator) {
        return null;
      }
    }

    //can safely convert the join to a map join.
    ParseContext parseContext = context.parseContext;
    MapJoinOperator mapJoinOp = MapJoinProcessor.
      convertJoinOpMapJoinOp(context.conf, parseContext.getOpParseCtx(),
          joinOp, parseContext.getJoinContext().get(joinOp), bigTablePosition, true);

    Operator parentBigTableOp
      = mapJoinOp.getParentOperators().get(bigTablePosition);

    if (parentBigTableOp instanceof ReduceSinkOperator) {
      mapJoinOp.getParentOperators().remove(bigTablePosition);
      if (!(mapJoinOp.getParentOperators().contains(
              parentBigTableOp.getParentOperators().get(0)))) {
        mapJoinOp.getParentOperators().add(bigTablePosition,
            parentBigTableOp.getParentOperators().get(0));
              }
      parentBigTableOp.getParentOperators().get(0).removeChild(parentBigTableOp);
      for (Operator op : mapJoinOp.getParentOperators()) {
        if (!(op.getChildOperators().contains(mapJoinOp))) {
          op.getChildOperators().add(mapJoinOp);
        }
        op.getChildOperators().remove(joinOp);
      }
    }

    return mapJoinOp;
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy