All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.hive.ql.optimizer.StatsOptimizer Maven / Gradle / Ivy

There is a newer version: 4.0.1
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.hadoop.hive.ql.optimizer;

import java.util.ArrayList;
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.Stack;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.hive.common.StatsSetupConst;
import org.apache.hadoop.hive.common.type.HiveDecimal;
import org.apache.hadoop.hive.metastore.api.ColumnStatisticsData;
import org.apache.hadoop.hive.metastore.api.ColumnStatisticsObj;
import org.apache.hadoop.hive.metastore.api.DoubleColumnStatsData;
import org.apache.hadoop.hive.metastore.api.LongColumnStatsData;
import org.apache.hadoop.hive.ql.exec.ColumnInfo;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.FetchTask;
import org.apache.hadoop.hive.ql.exec.FileSinkOperator;
import org.apache.hadoop.hive.ql.exec.FunctionRegistry;
import org.apache.hadoop.hive.ql.exec.GroupByOperator;
import org.apache.hadoop.hive.ql.exec.ReduceSinkOperator;
import org.apache.hadoop.hive.ql.exec.SelectOperator;
import org.apache.hadoop.hive.ql.exec.TableScanOperator;
import org.apache.hadoop.hive.ql.exec.TaskFactory;
import org.apache.hadoop.hive.ql.lib.DefaultGraphWalker;
import org.apache.hadoop.hive.ql.lib.DefaultRuleDispatcher;
import org.apache.hadoop.hive.ql.lib.Dispatcher;
import org.apache.hadoop.hive.ql.lib.GraphWalker;
import org.apache.hadoop.hive.ql.lib.Node;
import org.apache.hadoop.hive.ql.lib.NodeProcessor;
import org.apache.hadoop.hive.ql.lib.NodeProcessorCtx;
import org.apache.hadoop.hive.ql.lib.Rule;
import org.apache.hadoop.hive.ql.lib.RuleRegExp;
import org.apache.hadoop.hive.ql.metadata.Hive;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.metadata.Partition;
import org.apache.hadoop.hive.ql.metadata.Table;
import org.apache.hadoop.hive.ql.parse.ParseContext;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.plan.AggregationDesc;
import org.apache.hadoop.hive.ql.plan.ExprNodeColumnDesc;
import org.apache.hadoop.hive.ql.plan.ExprNodeConstantDesc;
import org.apache.hadoop.hive.ql.plan.ExprNodeDesc;
import org.apache.hadoop.hive.ql.plan.FetchWork;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFCount;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFMax;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFMin;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFResolver;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFSum;
import org.apache.hadoop.hive.serde.serdeConstants;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector.PrimitiveCategory;
import org.apache.hadoop.hive.serde2.objectinspector.StandardStructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.apache.hive.common.util.AnnotationUtils;
import org.apache.thrift.TException;

import com.google.common.collect.Lists;


/** There is a set of queries which can be answered entirely from statistics stored in metastore.
 * Examples of such queries are count(*), count(a), max(a), min(b) etc. Hive already collects
 * these basic statistics for query planning purposes. These same statistics can be used to
 * answer queries also.
 *
 * Optimizer looks at query plan to determine if it can answer query using statistics
 * and than change the plan to answer query entirely using statistics stored in metastore.
 */
public class StatsOptimizer implements Transform {
  // TODO: [HIVE-6289] while getting stats from metastore, we currently only get one col at
  //       a time; this could be improved - get all necessary columns in advance, then use local.
  // TODO: [HIVE-6292] aggregations could be done directly in metastore. Hive over MySQL!

  private static final Log Log = LogFactory.getLog(StatsOptimizer.class);

  @Override
  public ParseContext transform(ParseContext pctx) throws SemanticException {

    if (pctx.getFetchTask() != null || !pctx.getQB().getIsQuery() ||
        pctx.getQB().isAnalyzeRewrite() || pctx.getQB().isCTAS() ||
        pctx.getLoadFileWork().size() > 1 || !pctx.getLoadTableWork().isEmpty()) {
      return pctx;
    }

    String TS = TableScanOperator.getOperatorName() + "%";
    String GBY = GroupByOperator.getOperatorName() + "%";
    String RS = ReduceSinkOperator.getOperatorName() + "%";
    String SEL = SelectOperator.getOperatorName() + "%";
    String FS = FileSinkOperator.getOperatorName() + "%";

    Map opRules = new LinkedHashMap();
    opRules.put(new RuleRegExp("R1", TS + SEL + GBY + RS + GBY + SEL + FS),
        new MetaDataProcessor(pctx));

    Dispatcher disp = new DefaultRuleDispatcher(null, opRules, null);
    GraphWalker ogw = new DefaultGraphWalker(disp);

    ArrayList topNodes = new ArrayList();
    topNodes.addAll(pctx.getTopOps().values());
    ogw.startWalking(topNodes, null);
    return pctx;
  }

  private static class MetaDataProcessor implements NodeProcessor {

    private final ParseContext pctx;

    public MetaDataProcessor (ParseContext pctx) {
      this.pctx = pctx;
    }

    enum StatType{
      Integeral,
      Double,
      String,
      Boolean,
      Binary,
      Unsupported
    }

    private StatType getType(String origType) {
      if (serdeConstants.IntegralTypes.contains(origType)) {
        return StatType.Integeral;
      } else if (origType.equals(serdeConstants.DOUBLE_TYPE_NAME) ||
          origType.equals(serdeConstants.FLOAT_TYPE_NAME)) {
        return StatType.Double;
      } else if (origType.equals(serdeConstants.BINARY_TYPE_NAME)) {
        return StatType.Binary;
      } else if (origType.equals(serdeConstants.BOOLEAN_TYPE_NAME)) {
        return StatType.Boolean;
      } else if (origType.equals(serdeConstants.STRING_TYPE_NAME)) {
        return StatType.String;
      }
      return StatType.Unsupported;
    }

    private Long getNullcountFor(StatType type, ColumnStatisticsData statData) {

      switch(type) {
      case Integeral :
        return statData.getLongStats().getNumNulls();
      case Double:
        return statData.getDoubleStats().getNumNulls();
      case String:
        return statData.getStringStats().getNumNulls();
      case Boolean:
        return statData.getBooleanStats().getNumNulls();
      case Binary:
        return statData.getBinaryStats().getNumNulls();
      default:
        return null;
      }
    }

    @Override
    public Object process(Node nd, Stack stack, NodeProcessorCtx procCtx,
        Object... nodeOutputs) throws SemanticException {

      // 1. Do few checks to determine eligibility of optimization
      // 2. look at ExprNodeFuncGenericDesc in select list to see if its min, max, count etc.
      //    If it is
      // 3. Connect to metastore and get the stats
      // 4. Compose rows and add it in FetchWork
      // 5. Delete GBY - RS - GBY - SEL from the pipeline.

      try {
        TableScanOperator tsOp = (TableScanOperator) stack.get(0);
        if(tsOp.getParentOperators() != null && tsOp.getParentOperators().size() > 0) {
          // looks like a subq plan.
          return null;
        }
        SelectOperator selOp = (SelectOperator)tsOp.getChildren().get(0);
        for(ExprNodeDesc desc : selOp.getConf().getColList()) {
          if (!((desc instanceof ExprNodeColumnDesc) || (desc instanceof ExprNodeConstantDesc))) {
            // Probably an expression, cant handle that
            return null;
          }
        }
        Map exprMap = selOp.getColumnExprMap();
        // Since we have done an exact match on TS-SEL-GBY-RS-GBY-SEL-FS
        // we need not to do any instanceof checks for following.
        GroupByOperator gbyOp = (GroupByOperator)selOp.getChildren().get(0);
        ReduceSinkOperator rsOp = (ReduceSinkOperator)gbyOp.getChildren().get(0);
        if (rsOp.getConf().getDistinctColumnIndices().size() > 0) {
          // we can't handle distinct
          return null;
        }

        selOp = (SelectOperator)rsOp.getChildOperators().get(0).getChildOperators().get(0);
        List aggrs = gbyOp.getConf().getAggregators();

        if (!(selOp.getConf().getColList().size() == aggrs.size())) {
          // all select columns must be aggregations
          return null;

        }
        for(ExprNodeDesc desc : selOp.getConf().getColList()) {
          if (!(desc instanceof ExprNodeColumnDesc)) {
            // Probably an expression, cant handle that
            return null;
          }
        }
        FileSinkOperator fsOp = (FileSinkOperator)(selOp.getChildren().get(0));
        if (fsOp.getChildOperators() != null && fsOp.getChildOperators().size() > 0) {
          // looks like a subq plan.
          return null;
        }

        Table tbl = tsOp.getConf().getTableMetadata();
        List oneRow = new ArrayList();
        List ois = new ArrayList();

        Hive hive = Hive.get(pctx.getConf());

        for (AggregationDesc aggr : aggrs) {
          if (aggr.getDistinct()) {
            // our stats for NDV is approx, not accurate.
            return null;
          }
          // Get the aggregate function matching the name in the query.
          GenericUDAFResolver udaf =
              FunctionRegistry.getGenericUDAFResolver(aggr.getGenericUDAFName());
          if (udaf instanceof GenericUDAFSum) {
            ExprNodeDesc desc = aggr.getParameters().get(0);
            String constant;
            if (desc instanceof ExprNodeConstantDesc) {
              constant = ((ExprNodeConstantDesc) desc).getValue().toString();
            } else if (desc instanceof ExprNodeColumnDesc && exprMap.get(((ExprNodeColumnDesc)desc).getColumn()) instanceof ExprNodeConstantDesc) {
              constant = ((ExprNodeConstantDesc)exprMap.get(((ExprNodeColumnDesc)desc).getColumn())).getValue().toString();
            } else {
              return null;
            }
            Long rowCnt = getRowCnt(pctx, tsOp, tbl);
            if(rowCnt == null) {
              return null;
            }
            oneRow.add(HiveDecimal.create(constant).multiply(HiveDecimal.create(rowCnt)));
            ois.add(PrimitiveObjectInspectorFactory.getPrimitiveJavaObjectInspector(
                PrimitiveCategory.DECIMAL));
          }
          else if (udaf instanceof GenericUDAFCount) {
            Long rowCnt = 0L;
            if (aggr.getParameters().isEmpty() || aggr.getParameters().get(0) instanceof
                ExprNodeConstantDesc || ((aggr.getParameters().get(0) instanceof ExprNodeColumnDesc) &&
                    exprMap.get(((ExprNodeColumnDesc)aggr.getParameters().get(0)).getColumn()) instanceof ExprNodeConstantDesc)) {
              // Its either count (*) or count(1) case
              rowCnt = getRowCnt(pctx, tsOp, tbl);
              if(rowCnt == null) {
                return null;
              }
            } else {
              // Its count(col) case
              ExprNodeColumnDesc desc = (ExprNodeColumnDesc)exprMap.get(((ExprNodeColumnDesc)aggr.getParameters().get(0)).getColumn());
              String colName = desc.getColumn();
              StatType type = getType(desc.getTypeString());
              if(!tbl.isPartitioned()) {
                if (!StatsSetupConst.areStatsUptoDate(tbl.getParameters())) {
                  Log.debug("Stats for table : " + tbl.getTableName() + " are not upto date.");
                  return null;
                }
                rowCnt = Long.parseLong(tbl.getProperty(StatsSetupConst.ROW_COUNT));
                if (rowCnt < 1) {
                  Log.debug("Table doesn't have upto date stats " + tbl.getTableName());
                  return null;
                }
                List stats = hive.getMSC().getTableColumnStatistics(
                    tbl.getDbName(),tbl.getTableName(), Lists.newArrayList(colName));
                if (stats.isEmpty()) {
                  Log.debug("No stats for " + tbl.getTableName() + " column " + colName);
                  return null;
                }
                Long nullCnt = getNullcountFor(type, stats.get(0).getStatsData());
                if (null == nullCnt) {
                  Log.debug("Unsupported type: " + desc.getTypeString() + " encountered in " +
                      "metadata optimizer for column : " + colName);
                  return null;
                } else {
                  rowCnt -= nullCnt;
                }
              } else {
                Set parts = pctx.getPrunedPartitions(
                    tsOp.getConf().getAlias(), tsOp).getPartitions();
                for (Partition part : parts) {
                  if (!StatsSetupConst.areStatsUptoDate(part.getParameters())) {
                    Log.debug("Stats for part : " + part.getSpec() + " are not upto date.");
                    return null;
                  }
                  Long partRowCnt = Long.parseLong(part.getParameters()
                      .get(StatsSetupConst.ROW_COUNT));
                  if (partRowCnt < 1) {
                    Log.debug("Partition doesn't have upto date stats " + part.getSpec());
                    return null;
                  }
                  rowCnt += partRowCnt;
                }
                Collection> result =
                    verifyAndGetPartStats(hive, tbl, colName, parts);
                if (result == null) {
                  return null; // logging inside
                }
                for (List statObj : result) {
                  ColumnStatisticsData statData = validateSingleColStat(statObj);
                  if (statData == null) return null;
                  Long nullCnt = getNullcountFor(type, statData);
                  if (nullCnt == null) {
                    Log.debug("Unsupported type: " + desc.getTypeString() + " encountered in " +
                        "metadata optimizer for column : " + colName);
                    return null;
                  } else {
                    rowCnt -= nullCnt;
                  }
                }
              }
            }
            oneRow.add(rowCnt);
            ois.add(PrimitiveObjectInspectorFactory.
                getPrimitiveJavaObjectInspector(PrimitiveCategory.LONG));
          } else if (udaf instanceof GenericUDAFMax) {
            ExprNodeColumnDesc colDesc = (ExprNodeColumnDesc)exprMap.get(((ExprNodeColumnDesc)aggr.getParameters().get(0)).getColumn());
            String colName = colDesc.getColumn();
            StatType type = getType(colDesc.getTypeString());
            if(!tbl.isPartitioned()) {
              if (!StatsSetupConst.areStatsUptoDate(tbl.getParameters())) {
                Log.debug("Stats for table : " + tbl.getTableName() + " are not upto date.");
                return null;
              }
              List stats = hive.getMSC().getTableColumnStatistics(
                  tbl.getDbName(),tbl.getTableName(), Lists.newArrayList(colName));
              if (stats.isEmpty()) {
                Log.debug("No stats for " + tbl.getTableName() + " column " + colName);
                return null;
              }
              ColumnStatisticsData statData = stats.get(0).getStatsData();
              switch (type) {
                case Integeral:
                  LongColumnStatsData lstats = statData.getLongStats();
                  oneRow.add(lstats.isSetHighValue() ? lstats.getHighValue() : null);
                  ois.add(PrimitiveObjectInspectorFactory.
                      getPrimitiveJavaObjectInspector(PrimitiveCategory.LONG));
                  break;
                case Double:
                  DoubleColumnStatsData dstats = statData.getDoubleStats();
                  oneRow.add(dstats.isSetHighValue() ? dstats.getHighValue() : null);
                  ois.add(PrimitiveObjectInspectorFactory.
                      getPrimitiveJavaObjectInspector(PrimitiveCategory.DOUBLE));
                  break;
                default:
                  // unsupported type
                  Log.debug("Unsupported type: " + colDesc.getTypeString() + " encountered in " +
                      "metadata optimizer for column : " + colName);
                  return null;
              }
            } else {
              Set parts = pctx.getPrunedPartitions(
                  tsOp.getConf().getAlias(), tsOp).getPartitions();
              switch (type) {
                case Integeral: {
                  Long maxVal = null;
                  Collection> result =
                      verifyAndGetPartStats(hive, tbl, colName, parts);
                  if (result == null) {
                    return null; // logging inside
                  }
                  for (List statObj : result) {
                    ColumnStatisticsData statData = validateSingleColStat(statObj);
                    if (statData == null) return null;
                    LongColumnStatsData lstats = statData.getLongStats();
                    if (!lstats.isSetHighValue()) {
                      continue;
                    }
                    long curVal = lstats.getHighValue();
                    maxVal = maxVal == null ? curVal : Math.max(maxVal, curVal);
                  }
                  oneRow.add(maxVal);
                  ois.add(PrimitiveObjectInspectorFactory.
                      getPrimitiveJavaObjectInspector(PrimitiveCategory.LONG));
                  break;
                }
                case Double: {
                  Double maxVal = null;
                  Collection> result =
                      verifyAndGetPartStats(hive, tbl, colName, parts);
                  if (result == null) {
                    return null; // logging inside
                  }
                  for (List statObj : result) {
                    ColumnStatisticsData statData = validateSingleColStat(statObj);
                    if (statData == null) return null;
                    DoubleColumnStatsData dstats = statData.getDoubleStats();
                    if (!dstats.isSetHighValue()) {
                      continue;
                    }
                    double curVal = statData.getDoubleStats().getHighValue();
                    maxVal = maxVal == null ? curVal : Math.max(maxVal, curVal);
                  }
                  oneRow.add(maxVal);
                  ois.add(PrimitiveObjectInspectorFactory.
                      getPrimitiveJavaObjectInspector(PrimitiveCategory.DOUBLE));
                  break;
                }
                default:
                  Log.debug("Unsupported type: " + colDesc.getTypeString() + " encountered in " +
                      "metadata optimizer for column : " + colName);
                  return null;
              }
            }
          }  else if (udaf instanceof GenericUDAFMin) {
            ExprNodeColumnDesc colDesc = (ExprNodeColumnDesc)exprMap.get(((ExprNodeColumnDesc)aggr.getParameters().get(0)).getColumn());
            String colName = colDesc.getColumn();
            StatType type = getType(colDesc.getTypeString());
            if (!tbl.isPartitioned()) {
              if (!StatsSetupConst.areStatsUptoDate(tbl.getParameters())) {
                Log.debug("Stats for table : " + tbl.getTableName() + " are not upto date.");
                return null;
              }
              ColumnStatisticsData statData = hive.getMSC().getTableColumnStatistics(
                  tbl.getDbName(), tbl.getTableName(), Lists.newArrayList(colName))
                  .get(0).getStatsData();
              switch (type) {
                case Integeral:
                  LongColumnStatsData lstats = statData.getLongStats();
                  oneRow.add(lstats.isSetLowValue() ? lstats.getLowValue() : null);
                  ois.add(PrimitiveObjectInspectorFactory.
                      getPrimitiveJavaObjectInspector(PrimitiveCategory.LONG));
                  break;
                case Double:
                  DoubleColumnStatsData dstats = statData.getDoubleStats();
                  oneRow.add(dstats.isSetLowValue() ? dstats.getLowValue() : null);
                  ois.add(PrimitiveObjectInspectorFactory.
                      getPrimitiveJavaObjectInspector(PrimitiveCategory.DOUBLE));
                  break;
                default: // unsupported type
                  Log.debug("Unsupported type: " + colDesc.getTypeString() + " encountered in " +
                      "metadata optimizer for column : " + colName);
                  return null;
              }
            } else {
              Set parts = pctx.getPrunedPartitions(tsOp.getConf().getAlias(), tsOp).getPartitions();
              switch(type) {
                case Integeral: {
                  Long minVal = null;
                  Collection> result =
                      verifyAndGetPartStats(hive, tbl, colName, parts);
                  if (result == null) {
                    return null; // logging inside
                  }
                  for (List statObj : result) {
                    ColumnStatisticsData statData = validateSingleColStat(statObj);
                    if (statData == null) return null;
                    LongColumnStatsData lstats = statData.getLongStats();
                    if (!lstats.isSetLowValue()) {
                      continue;
                    }
                    long curVal = lstats.getLowValue();
                    minVal = minVal == null ? curVal : Math.min(minVal, curVal);
                  }
                  oneRow.add(minVal);
                  ois.add(PrimitiveObjectInspectorFactory.
                      getPrimitiveJavaObjectInspector(PrimitiveCategory.LONG));
                  break;
                }
                case Double: {
                  Double minVal = null;
                  Collection> result =
                      verifyAndGetPartStats(hive, tbl, colName, parts);
                  if (result == null) {
                    return null; // logging inside
                  }
                  for (List statObj : result) {
                    ColumnStatisticsData statData = validateSingleColStat(statObj);
                    if (statData == null) return null;
                    DoubleColumnStatsData dstats = statData.getDoubleStats();
                    if (!dstats.isSetLowValue()) {
                      continue;
                    }
                    double curVal = statData.getDoubleStats().getLowValue();
                    minVal = minVal == null ? curVal : Math.min(minVal, curVal);
                  }
                  oneRow.add(minVal);
                  ois.add(PrimitiveObjectInspectorFactory.
                      getPrimitiveJavaObjectInspector(PrimitiveCategory.DOUBLE));
                  break;
                }
                default: // unsupported type
                  Log.debug("Unsupported type: " + colDesc.getTypeString() + " encountered in " +
                      "metadata optimizer for column : " + colName);
                  return null;

              }
            }
          } else { // Unsupported aggregation.
            Log.debug("Unsupported aggregation for metadata optimizer: "
                + aggr.getGenericUDAFName());
            return null;
          }
        }


        List> allRows = new ArrayList>();
        allRows.add(oneRow);

        List colNames = new ArrayList();
        for (ColumnInfo colInfo: gbyOp.getSchema().getSignature()) {
          colNames.add(colInfo.getInternalName());
        }
        StandardStructObjectInspector sOI = ObjectInspectorFactory.
            getStandardStructObjectInspector(colNames, ois);
        FetchWork fWork = new FetchWork(allRows, sOI);
        FetchTask fTask = (FetchTask)TaskFactory.get(fWork, pctx.getConf());
        fWork.setLimit(allRows.size());
        pctx.setFetchTask(fTask);

        return null;
      } catch (Exception e) {
        // this is best effort optimization, bail out in error conditions and
        // try generate and execute slower plan
        Log.debug("Failed to optimize using metadata optimizer", e);
        return null;
      }
    }

    private ColumnStatisticsData validateSingleColStat(List statObj) {
      if (statObj.size() > 1) {
        Log.error("More than one stat for a single column!");
        return null;
      } else if (statObj.isEmpty()) {
        Log.debug("No stats for some partition and column");
        return null;
      }
      return statObj.get(0).getStatsData();
    }

    private Collection> verifyAndGetPartStats(
        Hive hive, Table tbl, String colName, Set parts) throws TException {
      List partNames = new ArrayList(parts.size());
      for (Partition part : parts) {
        if (!StatsSetupConst.areStatsUptoDate(part.getParameters())) {
          Log.debug("Stats for part : " + part.getSpec() + " are not upto date.");
          return null;
        }
        partNames.add(part.getName());
      }
      Map> result = hive.getMSC().getPartitionColumnStatistics(
          tbl.getDbName(), tbl.getTableName(), partNames, Lists.newArrayList(colName));
      if (result.size() != parts.size()) {
        Log.debug("Received " + result.size() + " stats for " + parts.size() + " partitions");
        return null;
      }
      return result.values();
    }

    private Long getRowCnt(
        ParseContext pCtx, TableScanOperator tsOp, Table tbl) throws HiveException {
      Long rowCnt = 0L;
      if (tbl.isPartitioned()) {
        for (Partition part : pctx.getPrunedPartitions(
            tsOp.getConf().getAlias(), tsOp).getPartitions()) {
          long partRowCnt = Long.parseLong(part.getParameters().get(StatsSetupConst.ROW_COUNT));
          if (partRowCnt < 1) {
            Log.debug("Partition doesn't have upto date stats " + part.getSpec());
            return null;
          }
          rowCnt += partRowCnt;
        }
      } else { // unpartitioned table
        rowCnt = Long.parseLong(tbl.getProperty(StatsSetupConst.ROW_COUNT));
        if (rowCnt < 1) {
          // if rowCnt < 1 than its either empty table or table on which stats are not
          //  computed We assume the worse and don't attempt to optimize.
          Log.debug("Table doesn't have upto date stats " + tbl.getTableName());
          rowCnt = null;
        }
      }
      return rowCnt;
    }
  }
}