All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.hive.ql.metadata.HiveMaterializedViewsRegistry Maven / Gradle / Ivy

There is a newer version: 4.0.1
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.hadoop.hive.ql.metadata;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicInteger;

import org.apache.calcite.adapter.druid.DruidQuery;
import org.apache.calcite.adapter.druid.DruidSchema;
import org.apache.calcite.adapter.druid.DruidTable;
import org.apache.calcite.jdbc.JavaTypeFactoryImpl;
import org.apache.calcite.plan.RelOptCluster;
import org.apache.calcite.plan.RelOptMaterialization;
import org.apache.calcite.plan.RelOptPlanner;
import org.apache.calcite.rel.RelNode;
import org.apache.calcite.rel.core.TableScan;
import org.apache.calcite.rel.type.RelDataType;
import org.apache.calcite.rel.type.RelDataTypeField;
import org.apache.calcite.rel.type.RelDataTypeImpl;
import org.apache.calcite.rex.RexBuilder;
import org.apache.calcite.sql.type.SqlTypeName;
import org.apache.hadoop.hive.conf.Constants;
import org.apache.hadoop.hive.conf.HiveConf;
import org.apache.hadoop.hive.metastore.api.FieldSchema;
import org.apache.hadoop.hive.ql.Context;
import org.apache.hadoop.hive.ql.QueryState;
import org.apache.hadoop.hive.ql.exec.ColumnInfo;
import org.apache.hadoop.hive.ql.optimizer.calcite.CalciteSemanticException;
import org.apache.hadoop.hive.ql.optimizer.calcite.RelOptHiveTable;
import org.apache.hadoop.hive.ql.optimizer.calcite.cost.HiveVolcanoPlanner;
import org.apache.hadoop.hive.ql.optimizer.calcite.reloperators.HiveRelNode;
import org.apache.hadoop.hive.ql.optimizer.calcite.reloperators.HiveTableScan;
import org.apache.hadoop.hive.ql.optimizer.calcite.translator.TypeConverter;
import org.apache.hadoop.hive.ql.parse.ASTNode;
import org.apache.hadoop.hive.ql.parse.CalcitePlanner;
import org.apache.hadoop.hive.ql.parse.ParseDriver;
import org.apache.hadoop.hive.ql.parse.ParseUtils;
import org.apache.hadoop.hive.ql.parse.PrunedPartitionList;
import org.apache.hadoop.hive.ql.parse.RowResolver;
import org.apache.hadoop.hive.ql.session.SessionState;
import org.apache.hadoop.hive.serde2.SerDeException;
import org.apache.hadoop.hive.serde2.objectinspector.StructField;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoFactory;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils;
import org.joda.time.Interval;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.google.common.collect.ImmutableList;

/** 
 * Registry for materialized views. The goal of this cache is to avoid parsing and creating
 * logical plans for the materialized views at query runtime. When a query arrives, we will
 * just need to consult this cache and extract the logical plans for the views (which had
 * already been parsed) from it.
 */
public final class HiveMaterializedViewsRegistry {

  private static final Logger LOG = LoggerFactory.getLogger(HiveMaterializedViewsRegistry.class);

  /* Singleton */
  private static final HiveMaterializedViewsRegistry SINGLETON = new HiveMaterializedViewsRegistry();

  /* Key is the database name. Value a map from a unique identifier for the view comprising
   * the qualified name and the creation time, to the view object.
   * Since currently we cannot alter a materialized view, that should suffice to identify
   * whether the cached view is up to date or not.
   * Creation time is useful to ensure correctness in case multiple HS2 instances are used. */
  private final ConcurrentMap> materializedViews =
      new ConcurrentHashMap>();
  private final ExecutorService pool = Executors.newCachedThreadPool();

  private HiveMaterializedViewsRegistry() {
  }

  /**
   * Get instance of HiveMaterializedViewsRegistry.
   *
   * @return the singleton
   */
  public static HiveMaterializedViewsRegistry get() {
    return SINGLETON;
  }

  /**
   * Initialize the registry for the given database. It will extract the materialized views
   * that are enabled for rewriting from the metastore for the current user, parse them,
   * and register them in this cache.
   *
   * The loading process runs on the background; the method returns in the moment that the
   * runnable task is created, thus the views will still not be loaded in the cache when
   * it does.
   */
  public void init(final Hive db) {
    try {
      List tables = new ArrayList
(); for (String dbName : db.getAllDatabases()) { // TODO: We should enhance metastore API such that it returns only // materialized views instead of all tables tables.addAll(db.getAllTableObjects(dbName)); } pool.submit(new Loader(tables)); } catch (HiveException e) { LOG.error("Problem connecting to the metastore when initializing the view registry"); } } private class Loader implements Runnable { private final List
tables; private Loader(List
tables) { this.tables = tables; } @Override public void run() { for (Table table : tables) { if (table.isMaterializedView()) { addMaterializedView(table); } } } } /** * Adds the materialized view to the cache. * * @param materializedViewTable the materialized view */ public RelOptMaterialization addMaterializedView(Table materializedViewTable) { // Bail out if it is not enabled for rewriting if (!materializedViewTable.isRewriteEnabled()) { return null; } ConcurrentMap cq = new ConcurrentHashMap(); final ConcurrentMap prevCq = materializedViews.putIfAbsent( materializedViewTable.getDbName(), cq); if (prevCq != null) { cq = prevCq; } // Bail out if it already exists final ViewKey vk = new ViewKey( materializedViewTable.getTableName(), materializedViewTable.getCreateTime()); if (cq.containsKey(vk)) { return null; } // Add to cache final String viewQuery = materializedViewTable.getViewOriginalText(); final RelNode tableRel = createTableScan(materializedViewTable); if (tableRel == null) { LOG.warn("Materialized view " + materializedViewTable.getCompleteName() + " ignored; error creating view replacement"); return null; } final RelNode queryRel = parseQuery(viewQuery); if (queryRel == null) { LOG.warn("Materialized view " + materializedViewTable.getCompleteName() + " ignored; error parsing original query"); return null; } RelOptMaterialization materialization = new RelOptMaterialization(tableRel, queryRel, null); cq.put(vk, materialization); if (LOG.isDebugEnabled()) { LOG.debug("Cached materialized view for rewriting: " + tableRel.getTable().getQualifiedName()); } return materialization; } /** * Removes the materialized view from the cache. * * @param materializedViewTable the materialized view to remove */ public void dropMaterializedView(Table materializedViewTable) { // Bail out if it is not enabled for rewriting if (!materializedViewTable.isRewriteEnabled()) { return; } final ViewKey vk = new ViewKey( materializedViewTable.getTableName(), materializedViewTable.getCreateTime()); materializedViews.get(materializedViewTable.getDbName()).remove(vk); } /** * Returns the materialized views in the cache for the given database. * * @param dbName the database * @return the collection of materialized views, or the empty collection if none */ Collection getRewritingMaterializedViews(String dbName) { if (materializedViews.get(dbName) != null) { return Collections.unmodifiableCollection(materializedViews.get(dbName).values()); } return ImmutableList.of(); } private static RelNode createTableScan(Table viewTable) { // 0. Recreate cluster final RelOptPlanner planner = HiveVolcanoPlanner.createPlanner(null); final RexBuilder rexBuilder = new RexBuilder(new JavaTypeFactoryImpl()); final RelOptCluster cluster = RelOptCluster.create(planner, rexBuilder); // 1. Create column schema final RowResolver rr = new RowResolver(); // 1.1 Add Column info for non partion cols (Object Inspector fields) StructObjectInspector rowObjectInspector; try { rowObjectInspector = (StructObjectInspector) viewTable.getDeserializer() .getObjectInspector(); } catch (SerDeException e) { // Bail out return null; } List fields = rowObjectInspector.getAllStructFieldRefs(); ColumnInfo colInfo; String colName; ArrayList cInfoLst = new ArrayList(); for (int i = 0; i < fields.size(); i++) { colName = fields.get(i).getFieldName(); colInfo = new ColumnInfo( fields.get(i).getFieldName(), TypeInfoUtils.getTypeInfoFromObjectInspector(fields.get(i).getFieldObjectInspector()), null, false); rr.put(null, colName, colInfo); cInfoLst.add(colInfo); } ArrayList nonPartitionColumns = new ArrayList(cInfoLst); // 1.2 Add column info corresponding to partition columns ArrayList partitionColumns = new ArrayList(); for (FieldSchema part_col : viewTable.getPartCols()) { colName = part_col.getName(); colInfo = new ColumnInfo(colName, TypeInfoFactory.getPrimitiveTypeInfo(part_col.getType()), null, true); rr.put(null, colName, colInfo); cInfoLst.add(colInfo); partitionColumns.add(colInfo); } // 1.3 Build row type from field RelDataType rowType; try { rowType = TypeConverter.getType(cluster, rr, null); } catch (CalciteSemanticException e) { // Bail out return null; } // 2. Build RelOptAbstractTable String fullyQualifiedTabName = viewTable.getDbName(); if (fullyQualifiedTabName != null && !fullyQualifiedTabName.isEmpty()) { fullyQualifiedTabName = fullyQualifiedTabName + "." + viewTable.getTableName(); } else { fullyQualifiedTabName = viewTable.getTableName(); } RelOptHiveTable optTable = new RelOptHiveTable(null, fullyQualifiedTabName, rowType, viewTable, nonPartitionColumns, partitionColumns, new ArrayList(), SessionState.get().getConf(), new HashMap(), new AtomicInteger()); RelNode tableRel; // 3. Build operator if (obtainTableType(viewTable) == TableType.DRUID) { // Build Druid query String address = HiveConf.getVar(SessionState.get().getConf(), HiveConf.ConfVars.HIVE_DRUID_BROKER_DEFAULT_ADDRESS); String dataSource = viewTable.getParameters().get(Constants.DRUID_DATA_SOURCE); Set metrics = new HashSet<>(); List druidColTypes = new ArrayList<>(); List druidColNames = new ArrayList<>(); for (RelDataTypeField field : rowType.getFieldList()) { druidColTypes.add(field.getType()); druidColNames.add(field.getName()); if (field.getName().equals(DruidTable.DEFAULT_TIMESTAMP_COLUMN)) { // timestamp continue; } if (field.getType().getSqlTypeName() == SqlTypeName.VARCHAR) { // dimension continue; } metrics.add(field.getName()); } List intervals = Arrays.asList(DruidTable.DEFAULT_INTERVAL); DruidTable druidTable = new DruidTable(new DruidSchema(address, address, false), dataSource, RelDataTypeImpl.proto(rowType), metrics, DruidTable.DEFAULT_TIMESTAMP_COLUMN, intervals); final TableScan scan = new HiveTableScan(cluster, cluster.traitSetOf(HiveRelNode.CONVENTION), optTable, viewTable.getTableName(), null, false, false); tableRel = DruidQuery.create(cluster, cluster.traitSetOf(HiveRelNode.CONVENTION), optTable, druidTable, ImmutableList.of(scan)); } else { // Build Hive Table Scan Rel tableRel = new HiveTableScan(cluster, cluster.traitSetOf(HiveRelNode.CONVENTION), optTable, viewTable.getTableName(), null, false, false); } return tableRel; } private static RelNode parseQuery(String viewQuery) { try { final ASTNode node = ParseUtils.parse(viewQuery); final QueryState qs = new QueryState(SessionState.get().getConf()); CalcitePlanner analyzer = new CalcitePlanner(qs); analyzer.initCtx(new Context(SessionState.get().getConf())); analyzer.init(false); return analyzer.genLogicalPlan(node); } catch (Exception e) { // We could not parse the view return null; } } private static class ViewKey { private String viewName; private int creationDate; private ViewKey(String viewName, int creationTime) { this.viewName = viewName; this.creationDate = creationTime; } @Override public boolean equals(Object obj) { if(this == obj) { return true; } if((obj == null) || (obj.getClass() != this.getClass())) { return false; } ViewKey viewKey = (ViewKey) obj; return creationDate == viewKey.creationDate && (viewName == viewKey.viewName || (viewName != null && viewName.equals(viewKey.viewName))); } @Override public int hashCode() { int hash = 7; hash = 31 * hash + creationDate; hash = 31 * hash + viewName.hashCode(); return hash; } @Override public String toString() { return "ViewKey{" + viewName + "," + creationDate + "}"; } } private static TableType obtainTableType(Table tabMetaData) { if (tabMetaData.getStorageHandler() != null && tabMetaData.getStorageHandler().toString().equals( Constants.DRUID_HIVE_STORAGE_HANDLER_ID)) { return TableType.DRUID; } return TableType.NATIVE; } private enum TableType { DRUID, NATIVE } }