All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.hive.ql.optimizer.GenMRUnion1 Maven / Gradle / Ivy

There is a newer version: 4.0.1
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.hive.ql.optimizer;

import java.io.Serializable;
import java.util.Map;
import java.util.Stack;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hive.ql.Context;
import org.apache.hadoop.hive.ql.exec.Operator;
import org.apache.hadoop.hive.ql.exec.TableScanOperator;
import org.apache.hadoop.hive.ql.exec.Task;
import org.apache.hadoop.hive.ql.exec.TaskFactory;
import org.apache.hadoop.hive.ql.exec.UnionOperator;
import org.apache.hadoop.hive.ql.lib.Node;
import org.apache.hadoop.hive.ql.lib.NodeProcessor;
import org.apache.hadoop.hive.ql.lib.NodeProcessorCtx;
import org.apache.hadoop.hive.ql.optimizer.GenMRProcContext.GenMRUnionCtx;
import org.apache.hadoop.hive.ql.optimizer.GenMRProcContext.GenMapRedCtx;
import org.apache.hadoop.hive.ql.optimizer.unionproc.UnionProcContext;
import org.apache.hadoop.hive.ql.optimizer.unionproc.UnionProcContext.UnionParseContext;
import org.apache.hadoop.hive.ql.optimizer.unionproc.UnionProcFactory;
import org.apache.hadoop.hive.ql.parse.ParseContext;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.plan.MapredWork;
import org.apache.hadoop.hive.ql.plan.OperatorDesc;
import org.apache.hadoop.hive.ql.plan.PlanUtils;
import org.apache.hadoop.hive.ql.plan.TableDesc;

/**
 * Processor for the rule - TableScan followed by Union.
 */
public class GenMRUnion1 implements NodeProcessor {

  public GenMRUnion1() {
  }

  /**
   * Process the union if all sub-queries are map-only
   *
   * @return
   * @throws SemanticException
   */
  private Object processMapOnlyUnion(UnionOperator union, Stack stack,
      GenMRProcContext ctx, UnionProcContext uCtx) throws SemanticException {

    // merge currTask from multiple topOps
    GenMRUnionCtx uCtxTask = ctx.getUnionTask(union);
    if (uCtxTask != null) {
      // get task associated with this union
      Task uTask = ctx.getUnionTask(union).getUTask();
      if (uTask != null) {
        if (ctx.getCurrTask() != null && ctx.getCurrTask() != uTask) {
          // if ctx.getCurrTask() is in rootTasks, should be removed
          ctx.getRootTasks().remove(ctx.getCurrTask());
        }
        ctx.setCurrTask(uTask);
      }
    }

    UnionParseContext uPrsCtx = uCtx.getUnionParseContext(union);
    ctx.getMapCurrCtx().put(
        union,
        new GenMapRedCtx(ctx.getCurrTask(),
            ctx.getCurrAliasId()));

    // if the union is the first time seen, set current task to GenMRUnionCtx
    uCtxTask = ctx.getUnionTask(union);
    if (uCtxTask == null) {
      uCtxTask = new GenMRUnionCtx(ctx.getCurrTask());
      ctx.setUnionTask(union, uCtxTask);
    }

    Task uTask = ctx.getCurrTask();
    if (uTask.getParentTasks() == null
        || uTask.getParentTasks().isEmpty()) {
      if (!ctx.getRootTasks().contains(uTask)) {
        ctx.getRootTasks().add(uTask);
      }
    }

    return true;
  }

  /**
   * Process the union when the parent is a map-reduce job. Create a temporary
   * output, and let the union task read from the temporary output.
   *
   * The files created for all the inputs are in the union context and later
   * used to initialize the union plan
   *
   * @param parent
   * @param child
   * @param uTask
   * @param ctx
   * @param uCtxTask
   */
  private void processSubQueryUnionCreateIntermediate(
      Operator parent,
      Operator child,
      Task uTask, GenMRProcContext ctx,
      GenMRUnionCtx uCtxTask) {
    ParseContext parseCtx = ctx.getParseCtx();

    TableDesc tt_desc = PlanUtils.getIntermediateFileTableDesc(PlanUtils
        .getFieldSchemasFromRowSchema(
            parent.getSchema(), "temporarycol"));

    // generate the temporary file
    Context baseCtx = parseCtx.getContext();
    Path taskTmpDir = baseCtx.getMRTmpPath();

    // Create the temporary file, its corresponding FileSinkOperaotr, and
    // its corresponding TableScanOperator.
    TableScanOperator tableScanOp =
        GenMapRedUtils.createTemporaryFile(parent, child, taskTmpDir, tt_desc, parseCtx);

    // Add the path to alias mapping
    uCtxTask.addTaskTmpDir(taskTmpDir.toUri().toString());
    uCtxTask.addTTDesc(tt_desc);
    uCtxTask.addListTopOperators(tableScanOp);

    // The union task is empty. The files created for all the inputs are
    // assembled in the union context and later used to initialize the union
    // plan

    Task currTask = ctx.getCurrTask();
    currTask.addDependentTask(uTask);
    if (ctx.getRootTasks().contains(uTask)) {
      ctx.getRootTasks().remove(uTask);
      if (!ctx.getRootTasks().contains(currTask) &&
          shouldBeRootTask(currTask)) {
        ctx.getRootTasks().add(currTask);
      }
    }
  }

  /**
   * Union Operator encountered. A map-only query is encountered at the given
   * position. However, at least one sub-query is a map-reduce job. Copy the
   * information from the current top operator to the union context.
   *
   * @param ctx
   * @param uCtxTask
   * @param union
   * @param stack
   * @throws SemanticException
   */
  private void processSubQueryUnionMerge(GenMRProcContext ctx,
      GenMRUnionCtx uCtxTask, UnionOperator union, Stack stack)
      throws SemanticException {
    // The current plan can be thrown away after being merged with the union
    // plan
    Task uTask = uCtxTask.getUTask();
    ctx.setCurrTask(uTask);
    TableScanOperator topOp = ctx.getCurrTopOp();
    if (topOp != null && !ctx.isSeenOp(uTask, topOp)) {
      GenMapRedUtils.setTaskPlan(ctx.getCurrAliasId(), ctx
          .getCurrTopOp(), uTask, false, ctx);
    }
  }

  /**
   * Union Operator encountered . Currently, the algorithm is pretty simple: If
   * all the sub-queries are map-only, don't do anything. Otherwise, insert a
   * FileSink on top of all the sub-queries.
   *
   * This can be optimized later on.
   *
   * @param nd
   *          the file sink operator encountered
   * @param opProcCtx
   *          context
   */
  @Override
  public Object process(Node nd, Stack stack, NodeProcessorCtx opProcCtx,
      Object... nodeOutputs) throws SemanticException {
    UnionOperator union = (UnionOperator) nd;
    GenMRProcContext ctx = (GenMRProcContext) opProcCtx;
    ParseContext parseCtx = ctx.getParseCtx();
    UnionProcContext uCtx = parseCtx.getUCtx();

    // Map-only subqueries can be optimized in future to not write to a file in
    // future
    Map, GenMapRedCtx> mapCurrCtx = ctx.getMapCurrCtx();

    if (union.getConf().isAllInputsInSameReducer()) {
      // All inputs of this UnionOperator are in the same Reducer.
      // We do not need to break the operator tree.
      mapCurrCtx.put((Operator) nd,
        new GenMapRedCtx(ctx.getCurrTask(),ctx.getCurrAliasId()));
      return null;
    }

    UnionParseContext uPrsCtx = uCtx.getUnionParseContext(union);

    ctx.setCurrUnionOp(union);
    // The plan needs to be broken only if one of the sub-queries involve a
    // map-reduce job
    if (uPrsCtx.allMapOnlySubQ()) {
      return processMapOnlyUnion(union, stack, ctx, uCtx);
    }

    assert uPrsCtx != null;

    Task currTask = ctx.getCurrTask();
    int pos = UnionProcFactory.getPositionParent(union, stack);

    Task uTask = null;
    MapredWork uPlan = null;

    // union is encountered for the first time
    GenMRUnionCtx uCtxTask = ctx.getUnionTask(union);
    if (uCtxTask == null) {
      uPlan = GenMapRedUtils.getMapRedWork(parseCtx);
      uTask = TaskFactory.get(uPlan, parseCtx.getConf());
      uCtxTask = new GenMRUnionCtx(uTask);
      ctx.setUnionTask(union, uCtxTask);
    }
    else {
      uTask = uCtxTask.getUTask();
    }

    // Copy into the current union task plan if
    if (uPrsCtx.getMapOnlySubq(pos) && uPrsCtx.getRootTask(pos)) {
      processSubQueryUnionMerge(ctx, uCtxTask, union, stack);
      if (ctx.getRootTasks().contains(currTask)) {
        ctx.getRootTasks().remove(currTask);
      }
    }
    // If it a map-reduce job, create a temporary file
    else {
      // is the current task a root task
      if (shouldBeRootTask(currTask)
          && !ctx.getRootTasks().contains(currTask)
          && (currTask.getParentTasks() == null
              || currTask.getParentTasks().isEmpty())) {
        ctx.getRootTasks().add(currTask);
      }

      processSubQueryUnionCreateIntermediate(union.getParentOperators().get(pos), union, uTask,
          ctx, uCtxTask);
      // the currAliasId and CurrTopOp is not valid any more
      ctx.setCurrAliasId(null);
      ctx.setCurrTopOp(null);
      ctx.getOpTaskMap().put(null, uTask);
    }

    ctx.setCurrTask(uTask);

    mapCurrCtx.put((Operator) nd,
        new GenMapRedCtx(ctx.getCurrTask(), null));

    return true;
  }

  private boolean shouldBeRootTask(
      Task currTask) {
    return currTask.getParentTasks() == null
        || (currTask.getParentTasks().size() == 0);
  }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy