All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.hive.ql.optimizer.GenMRTableScan1 Maven / Gradle / Ivy

There is a newer version: 4.0.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.hive.ql.optimizer;

import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.Stack;

import org.apache.hadoop.hive.ql.exec.Operator;
import org.apache.hadoop.hive.ql.exec.TableScanOperator;
import org.apache.hadoop.hive.ql.exec.Task;
import org.apache.hadoop.hive.ql.exec.TaskFactory;
import org.apache.hadoop.hive.ql.exec.mr.MapRedTask;
import org.apache.hadoop.hive.ql.io.orc.OrcInputFormat;
import org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat;
import org.apache.hadoop.hive.ql.lib.Node;
import org.apache.hadoop.hive.ql.lib.NodeProcessor;
import org.apache.hadoop.hive.ql.lib.NodeProcessorCtx;
import org.apache.hadoop.hive.ql.metadata.Partition;
import org.apache.hadoop.hive.ql.metadata.Table;
import org.apache.hadoop.hive.ql.optimizer.GenMRProcContext.GenMapRedCtx;
import org.apache.hadoop.hive.ql.parse.ParseContext;
import org.apache.hadoop.hive.ql.parse.PrunedPartitionList;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.plan.StatsWork;
import org.apache.hadoop.hive.ql.plan.BasicStatsWork;
import org.apache.hadoop.hive.ql.plan.MapredWork;
import org.apache.hadoop.hive.ql.plan.OperatorDesc;
import org.apache.hadoop.mapred.InputFormat;

/**
 * Processor for the rule - table scan.
 */
public class GenMRTableScan1 implements NodeProcessor {
  public GenMRTableScan1() {
  }

  /**
   * Table Sink encountered.
   * @param nd
   *          the table sink operator encountered
   * @param opProcCtx
   *          context
   */
  @Override
  public Object process(Node nd, Stack stack, NodeProcessorCtx opProcCtx,
      Object... nodeOutputs) throws SemanticException {
    TableScanOperator op = (TableScanOperator) nd;
    GenMRProcContext ctx = (GenMRProcContext) opProcCtx;
    ParseContext parseCtx = ctx.getParseCtx();
    Table table = op.getConf().getTableMetadata();
    Class inputFormat = table.getInputFormatClass();
    Map, GenMapRedCtx> mapCurrCtx = ctx.getMapCurrCtx();

    // create a dummy MapReduce task
    MapredWork currWork = GenMapRedUtils.getMapRedWork(parseCtx);
    MapRedTask currTask = (MapRedTask) TaskFactory.get(currWork);
    ctx.setCurrTask(currTask);
    ctx.setCurrTopOp(op);

    for (String alias : parseCtx.getTopOps().keySet()) {
      Operator currOp = parseCtx.getTopOps().get(alias);
      if (currOp == op) {
        String currAliasId = alias;
        ctx.setCurrAliasId(currAliasId);
        mapCurrCtx.put(op, new GenMapRedCtx(currTask, currAliasId));

        if (parseCtx.getQueryProperties().isAnalyzeCommand()) {
          boolean noScan = parseCtx.getQueryProperties().isNoScanAnalyzeCommand();
          if (OrcInputFormat.class.isAssignableFrom(inputFormat) ||
                  MapredParquetInputFormat.class.isAssignableFrom(inputFormat)) {
            // For ORC and Parquet, all the following statements are the same
            // ANALYZE TABLE T [PARTITION (...)] COMPUTE STATISTICS
            // ANALYZE TABLE T [PARTITION (...)] COMPUTE STATISTICS noscan;

            // There will not be any MR or Tez job above this task
            StatsWork statWork = new StatsWork(table, parseCtx.getConf());
            statWork.setFooterScan();

            // If partition is specified, get pruned partition list
            Set confirmedParts = GenMapRedUtils.getConfirmedPartitionsForScan(op);
            if (confirmedParts.size() > 0) {
              List partCols = GenMapRedUtils.getPartitionColumns(op);
              PrunedPartitionList partList = new PrunedPartitionList(table, confirmedParts, partCols, false);
              statWork.addInputPartitions(partList.getPartitions());
            }
            Task snjTask = TaskFactory.get(statWork);
            ctx.setCurrTask(snjTask);
            ctx.setCurrTopOp(null);
            ctx.getRootTasks().clear();
            ctx.getRootTasks().add(snjTask);
          } else {
            // ANALYZE TABLE T [PARTITION (...)] COMPUTE STATISTICS;
            // The plan consists of a simple MapRedTask followed by a StatsTask.
            // The MR task is just a simple TableScanOperator

            BasicStatsWork statsWork = new BasicStatsWork(table.getTableSpec());
            statsWork.setIsExplicitAnalyze(true);

            statsWork.setNoScanAnalyzeCommand(noScan);
            StatsWork columnStatsWork = new StatsWork(table, statsWork, parseCtx.getConf());
            columnStatsWork.collectStatsFromAggregator(op.getConf());

            columnStatsWork.setSourceTask(currTask);
            Task columnStatsTask = TaskFactory.get(columnStatsWork);
            currTask.addDependentTask(columnStatsTask);
            if (!ctx.getRootTasks().contains(currTask)) {
              ctx.getRootTasks().add(currTask);
            }

            // ANALYZE TABLE T [PARTITION (...)] COMPUTE STATISTICS noscan;
            // The plan consists of a StatsTask only.
            if (noScan) {
              columnStatsTask.setParentTasks(null);
              ctx.getRootTasks().remove(currTask);
              ctx.getRootTasks().add(columnStatsTask);
            }

            currWork.getMapWork().setGatheringStats(true);
            if (currWork.getReduceWork() != null) {
              currWork.getReduceWork().setGatheringStats(true);
            }

            // NOTE: here we should use the new partition predicate pushdown API to get a list of
            // pruned list,
            // and pass it to setTaskPlan as the last parameter
            Set confirmedPartns = GenMapRedUtils
                .getConfirmedPartitionsForScan(op);
            if (confirmedPartns.size() > 0) {
              List partCols = GenMapRedUtils.getPartitionColumns(op);
              PrunedPartitionList partList = new PrunedPartitionList(table, confirmedPartns, partCols, false);
              GenMapRedUtils.setTaskPlan(currAliasId, op, currTask, false, ctx, partList);
            } else { // non-partitioned table
              GenMapRedUtils.setTaskPlan(currAliasId, op, currTask, false, ctx);
            }
          }
        }

        return true;
      }
    }
    assert false;
    return null;
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy