Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hive.ql.optimizer;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Stack;
import org.apache.calcite.util.Pair;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.FilterOperator;
import org.apache.hadoop.hive.ql.exec.FunctionRegistry;
import org.apache.hadoop.hive.ql.lib.DefaultRuleDispatcher;
import org.apache.hadoop.hive.ql.lib.Dispatcher;
import org.apache.hadoop.hive.ql.lib.ForwardWalker;
import org.apache.hadoop.hive.ql.lib.GraphWalker;
import org.apache.hadoop.hive.ql.lib.Node;
import org.apache.hadoop.hive.ql.lib.NodeProcessor;
import org.apache.hadoop.hive.ql.lib.NodeProcessorCtx;
import org.apache.hadoop.hive.ql.lib.PreOrderOnceWalker;
import org.apache.hadoop.hive.ql.lib.Rule;
import org.apache.hadoop.hive.ql.lib.RuleRegExp;
import org.apache.hadoop.hive.ql.lib.TypeRule;
import org.apache.hadoop.hive.ql.parse.ParseContext;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.plan.ExprNodeColumnDesc;
import org.apache.hadoop.hive.ql.plan.ExprNodeConstantDesc;
import org.apache.hadoop.hive.ql.plan.ExprNodeDesc;
import org.apache.hadoop.hive.ql.plan.ExprNodeGenericFuncDesc;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDFIn;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDFOPEqual;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDFStruct;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoFactory;
import com.google.common.collect.ArrayListMultimap;
import com.google.common.collect.ListMultimap;
/**
* This optimization will take a Filter expression, and if its predicate contains
* an OR operator whose children are constant equality expressions, it will try
* to generate an IN clause (which is more efficient). If the OR operator contains
* AND operator children, the optimization might generate an IN clause that uses
* structs.
*/
public class PointLookupOptimizer extends Transform {
private static final Logger LOG = LoggerFactory.getLogger(PointLookupOptimizer.class);
private static final String IN_UDF =
GenericUDFIn.class.getAnnotation(Description.class).name();
private static final String STRUCT_UDF =
GenericUDFStruct.class.getAnnotation(Description.class).name();
// these are closure-bound for all the walkers in context
public final int minOrExpr;
/*
* Pass in configs and pre-create a parse context
*/
public PointLookupOptimizer(final int min) {
this.minOrExpr = min;
}
@Override
public ParseContext transform(ParseContext pctx) throws SemanticException {
// 1. Trigger transformation
Map opRules = new LinkedHashMap();
opRules.put(new RuleRegExp("R1", FilterOperator.getOperatorName() + "%"), new FilterTransformer());
Dispatcher disp = new DefaultRuleDispatcher(null, opRules, null);
GraphWalker ogw = new ForwardWalker(disp);
List topNodes = new ArrayList();
topNodes.addAll(pctx.getTopOps().values());
ogw.startWalking(topNodes, null);
return pctx;
}
private class FilterTransformer implements NodeProcessor {
@Override
public Object process(Node nd, Stack stack, NodeProcessorCtx procCtx,
Object... nodeOutputs) throws SemanticException {
FilterOperator filterOp = (FilterOperator) nd;
ExprNodeDesc predicate = filterOp.getConf().getPredicate();
// Generate the list bucketing pruning predicate
ExprNodeDesc newPredicate = generateInClause(predicate);
if (newPredicate != null) {
// Replace filter in current FIL with new FIL
if (LOG.isDebugEnabled()) {
LOG.debug("Generated new predicate with IN clause: " + newPredicate);
}
filterOp.getConf().setPredicate(newPredicate);
}
return null;
}
private ExprNodeDesc generateInClause(ExprNodeDesc predicate) throws SemanticException {
Map exprRules = new LinkedHashMap();
exprRules.put(new TypeRule(ExprNodeGenericFuncDesc.class), new OrExprProcessor());
// The dispatcher fires the processor corresponding to the closest matching
// rule and passes the context along
Dispatcher disp = new DefaultRuleDispatcher(null, exprRules, null);
GraphWalker egw = new PreOrderOnceWalker(disp);
List startNodes = new ArrayList();
startNodes.add(predicate);
HashMap outputMap = new HashMap();
egw.startWalking(startNodes, outputMap);
return (ExprNodeDesc) outputMap.get(predicate);
}
}
private class OrExprProcessor implements NodeProcessor {
@Override
public Object process(Node nd, Stack stack, NodeProcessorCtx procCtx,
Object... nodeOutputs) throws SemanticException {
ExprNodeGenericFuncDesc fd = (ExprNodeGenericFuncDesc) nd;
// 1. If it is not an OR operator, we bail out.
if (!FunctionRegistry.isOpOr(fd)) {
return null;
}
// 2. It is an OR operator with enough children
List children = fd.getChildren();
if (children.size() < minOrExpr) {
return null;
}
ListMultimap> columnConstantsMap =
ArrayListMultimap.create();
boolean modeAnd = false;
for (int i = 0; i < children.size(); i++) {
ExprNodeDesc child = children.get(i);
// - If the child is an AND operator, extract its children
// - Otherwise, take the child itself
final List conjunctions;
if (FunctionRegistry.isOpAnd(child)) {
// If it is the first child, we set the mode variable value
// Otherwise, if the mode we are working on is different, we
// bail out
if (i == 0) {
modeAnd = true;
} else {
if (!modeAnd) {
return null;
}
}
// Multiple children
conjunctions = child.getChildren();
} else {
// If it is the first child, we set the mode variable value
// Otherwise, if the mode we are working on is different, we
// bail out
if (i == 0) {
modeAnd = false;
} else {
if (modeAnd) {
return null;
}
}
// One child
conjunctions = new ArrayList(1);
conjunctions.add(child);
}
// 3. We will extract the literals to introduce in the IN clause.
// If the patterns OR-AND-EqOp or OR-EqOp are not matched, we bail out
for (ExprNodeDesc conjunction: conjunctions) {
if (!(conjunction instanceof ExprNodeGenericFuncDesc)) {
return null;
}
ExprNodeGenericFuncDesc conjCall = (ExprNodeGenericFuncDesc) conjunction;
Class extends GenericUDF> genericUdfClass = conjCall.getGenericUDF().getClass();
if(GenericUDFOPEqual.class == genericUdfClass) {
if (conjCall.getChildren().get(0) instanceof ExprNodeColumnDesc &&
conjCall.getChildren().get(1) instanceof ExprNodeConstantDesc) {
ExprNodeColumnDesc ref = (ExprNodeColumnDesc) conjCall.getChildren().get(0);
String refString = ref.toString();
columnConstantsMap.put(refString,
new Pair(
ref, (ExprNodeConstantDesc) conjCall.getChildren().get(1)));
if (columnConstantsMap.get(refString).size() != i+1) {
// If we have not added to this column desc before, we bail out
return null;
}
} else if (conjCall.getChildren().get(1) instanceof ExprNodeColumnDesc &&
conjCall.getChildren().get(0) instanceof ExprNodeConstantDesc) {
ExprNodeColumnDesc ref = (ExprNodeColumnDesc) conjCall.getChildren().get(1);
String refString = ref.toString();
columnConstantsMap.put(refString,
new Pair(
ref, (ExprNodeConstantDesc) conjCall.getChildren().get(0)));
if (columnConstantsMap.get(refString).size() != i+1) {
// If we have not added to this column desc before, we bail out
return null;
}
} else {
// We bail out
return null;
}
} else {
// We bail out
return null;
}
}
}
// 4. We build the new predicate and return it
ExprNodeDesc newPredicate = null;
List newChildren = new ArrayList(children.size());
// 4.1 Create structs
List columns = new ArrayList();
List names = new ArrayList();
List typeInfos = new ArrayList();
for (int i = 0; i < children.size(); i++) {
List constantFields = new ArrayList(children.size());
for (String keyString : columnConstantsMap.keySet()) {
Pair columnConstant =
columnConstantsMap.get(keyString).get(i);
if (i == 0) {
columns.add(columnConstant.left);
names.add(columnConstant.left.getColumn());
typeInfos.add(columnConstant.left.getTypeInfo());
}
constantFields.add(columnConstant.right);
}
if (i == 0) {
ExprNodeDesc columnsRefs;
if (columns.size() == 1) {
columnsRefs = columns.get(0);
} else {
columnsRefs = new ExprNodeGenericFuncDesc(
TypeInfoFactory.getStructTypeInfo(names, typeInfos),
FunctionRegistry.getFunctionInfo(STRUCT_UDF).getGenericUDF(),
columns);
}
newChildren.add(columnsRefs);
}
ExprNodeDesc values;
if (constantFields.size() == 1) {
values = constantFields.get(0);
} else {
values = new ExprNodeGenericFuncDesc(
TypeInfoFactory.getStructTypeInfo(names, typeInfos),
FunctionRegistry.getFunctionInfo(STRUCT_UDF).getGenericUDF(),
constantFields);
}
newChildren.add(values);
}
newPredicate = new ExprNodeGenericFuncDesc(TypeInfoFactory.booleanTypeInfo,
FunctionRegistry.getFunctionInfo(IN_UDF).getGenericUDF(), newChildren);
return newPredicate;
}
}
}