Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hive.hbase;
import java.io.IOException;
import java.security.PrivilegedExceptionAction;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapred.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableInputFormatBase;
import org.apache.hadoop.hbase.mapreduce.TableSplit;
import org.apache.hadoop.hive.hbase.ColumnMappings.ColumnMapping;
import org.apache.hadoop.hive.ql.exec.SerializationUtilities;
import org.apache.hadoop.hive.ql.index.IndexPredicateAnalyzer;
import org.apache.hadoop.hive.ql.index.IndexSearchCondition;
import org.apache.hadoop.hive.ql.plan.ExprNodeDesc;
import org.apache.hadoop.hive.ql.plan.ExprNodeGenericFuncDesc;
import org.apache.hadoop.hive.ql.plan.TableScanDesc;
import org.apache.hadoop.hive.serde.serdeConstants;
import org.apache.hadoop.hive.serde2.SerDeException;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils;
import org.apache.hadoop.hive.shims.ShimLoader;
import org.apache.hadoop.mapred.InputFormat;
import org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.security.UserGroupInformation;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* HiveHBaseTableInputFormat implements InputFormat for HBase storage handler
* tables, decorating an underlying HBase TableInputFormat with extra Hive logic
* such as column pruning and filter pushdown.
*/
public class HiveHBaseTableInputFormat extends TableInputFormatBase
implements InputFormat {
static final Logger LOG = LoggerFactory.getLogger(HiveHBaseTableInputFormat.class);
private static final Object HBASE_TABLE_MONITOR = new Object();
@Override public RecordReader getRecordReader(InputSplit split,
JobConf jobConf, final Reporter reporter) throws IOException {
HBaseSplit hbaseSplit = (HBaseSplit) split;
TableSplit tableSplit = hbaseSplit.getTableSplit();
final org.apache.hadoop.mapreduce.RecordReader recordReader;
Job job = new Job(jobConf);
TaskAttemptContext tac = ShimLoader.getHadoopShims().newTaskAttemptContext(job.getConfiguration(), reporter);
final Connection conn;
synchronized (HBASE_TABLE_MONITOR) {
conn = ConnectionFactory.createConnection(HBaseConfiguration.create(jobConf));
initializeTable(conn, tableSplit.getTable());
setScan(HiveHBaseInputFormatUtil.getScan(jobConf));
recordReader = createRecordReader(tableSplit, tac);
try {
recordReader.initialize(tableSplit, tac);
} catch (InterruptedException e) {
closeTable(); // Free up the HTable connections
conn.close();
throw new IOException("Failed to initialize RecordReader", e);
}
}
return new RecordReader() {
@Override public void close() throws IOException {
synchronized (HBASE_TABLE_MONITOR) {
recordReader.close();
closeTable();
conn.close();
}
}
@Override public ImmutableBytesWritable createKey() {
return new ImmutableBytesWritable();
}
@Override public ResultWritable createValue() {
return new ResultWritable(new Result());
}
@Override public long getPos() throws IOException {
return 0;
}
@Override public float getProgress() throws IOException {
float progress = 0.0F;
try {
progress = recordReader.getProgress();
} catch (InterruptedException e) {
throw new IOException(e);
}
return progress;
}
@Override public boolean next(ImmutableBytesWritable rowKey, ResultWritable value) throws IOException {
boolean next = false;
try {
next = recordReader.nextKeyValue();
if (next) {
rowKey.set(recordReader.getCurrentValue().getRow());
value.setResult(recordReader.getCurrentValue());
}
} catch (InterruptedException e) {
throw new IOException(e);
}
return next;
}
};
}
/**
* Converts a filter (which has been pushed down from Hive's optimizer)
* into corresponding restrictions on the HBase scan. The
* filter should already be in a form which can be fully converted.
*
* @param jobConf configuration for the scan
*
* @param iKey 0-based offset of key column within Hive table
*
* @return converted table split if any
*/
private Scan createFilterScan(JobConf jobConf, int iKey, int iTimestamp, boolean isKeyBinary) throws IOException {
// TODO: assert iKey is HBaseSerDe#HBASE_KEY_COL
Scan scan = new Scan();
String filterObjectSerialized = jobConf.get(TableScanDesc.FILTER_OBJECT_CONF_STR);
if (filterObjectSerialized != null) {
HiveHBaseInputFormatUtil.setupScanRange(scan, filterObjectSerialized, jobConf, false);
return scan;
}
String filterExprSerialized = jobConf.get(TableScanDesc.FILTER_EXPR_CONF_STR);
if (filterExprSerialized == null) {
return scan;
}
ExprNodeGenericFuncDesc filterExpr = SerializationUtilities.deserializeExpression(filterExprSerialized);
String keyColName = jobConf.get(serdeConstants.LIST_COLUMNS).split(",")[iKey];
ArrayList cols = TypeInfoUtils.getTypeInfosFromTypeString(jobConf.get(serdeConstants.LIST_COLUMN_TYPES));
String colType = cols.get(iKey).getTypeName();
boolean isKeyComparable = isKeyBinary || "string".equalsIgnoreCase(colType);
String tsColName = null;
if (iTimestamp >= 0) {
tsColName = jobConf.get(serdeConstants.LIST_COLUMNS).split(",")[iTimestamp];
}
IndexPredicateAnalyzer analyzer = newIndexPredicateAnalyzer(keyColName, isKeyComparable, tsColName);
List conditions = new ArrayList();
ExprNodeDesc residualPredicate = analyzer.analyzePredicate(filterExpr, conditions);
// There should be no residual since we already negotiated that earlier in
// HBaseStorageHandler.decomposePredicate. However, with hive.optimize.index.filter
// OpProcFactory#pushFilterToStorageHandler pushes the original filter back down again.
// Since pushed-down filters are not omitted at the higher levels (and thus the
// contract of negotiation is ignored anyway), just ignore the residuals.
// Re-assess this when negotiation is honored and the duplicate evaluation is removed.
// THIS IGNORES RESIDUAL PARSING FROM HBaseStorageHandler#decomposePredicate
if (residualPredicate != null) {
LOG.debug("Ignoring residual predicate " + residualPredicate.getExprString());
}
Map> split = HiveHBaseInputFormatUtil.decompose(conditions);
List keyConditions = split.get(keyColName);
if (keyConditions != null && !keyConditions.isEmpty()) {
HiveHBaseInputFormatUtil.setupKeyRange(scan, keyConditions, isKeyBinary);
}
List tsConditions = split.get(tsColName);
if (tsConditions != null && !tsConditions.isEmpty()) {
HiveHBaseInputFormatUtil.setupTimeRange(scan, tsConditions);
}
return scan;
}
/**
* Instantiates a new predicate analyzer suitable for
* determining how to push a filter down into the HBase scan,
* based on the rules for what kinds of pushdown we currently support.
*
* @param keyColumnName name of the Hive column mapped to the HBase row key
*
* @return preconfigured predicate analyzer
*/
static IndexPredicateAnalyzer newIndexPredicateAnalyzer(String keyColumnName, boolean isKeyComparable,
String timestampColumn) {
IndexPredicateAnalyzer analyzer = new IndexPredicateAnalyzer();
// We can always do equality predicate. Just need to make sure we get appropriate
// BA representation of constant of filter condition.
// We can do other comparisons only if storage format in hbase is either binary
// or we are dealing with string types since there lexicographic ordering will suffice.
if (isKeyComparable) {
analyzer.addComparisonOp(keyColumnName, "org.apache.hadoop.hive.ql.udf.generic.GenericUDFOPEqual",
"org.apache.hadoop.hive.ql.udf.generic.GenericUDFOPEqualOrGreaterThan",
"org.apache.hadoop.hive.ql.udf.generic.GenericUDFOPEqualOrLessThan",
"org.apache.hadoop.hive.ql.udf.generic.GenericUDFOPLessThan",
"org.apache.hadoop.hive.ql.udf.generic.GenericUDFOPGreaterThan");
} else {
analyzer.addComparisonOp(keyColumnName, "org.apache.hadoop.hive.ql.udf.generic.GenericUDFOPEqual");
}
if (timestampColumn != null) {
analyzer.addComparisonOp(timestampColumn, "org.apache.hadoop.hive.ql.udf.generic.GenericUDFOPEqual",
"org.apache.hadoop.hive.ql.udf.generic.GenericUDFOPEqualOrGreaterThan",
"org.apache.hadoop.hive.ql.udf.generic.GenericUDFOPEqualOrLessThan",
"org.apache.hadoop.hive.ql.udf.generic.GenericUDFOPLessThan",
"org.apache.hadoop.hive.ql.udf.generic.GenericUDFOPGreaterThan");
}
return analyzer;
}
@Override public InputSplit[] getSplits(final JobConf jobConf, final int numSplits) throws IOException {
synchronized (HBASE_TABLE_MONITOR) {
final UserGroupInformation ugi = UserGroupInformation.getCurrentUser();
if (ugi == null) {
return getSplitsInternal(jobConf, numSplits);
}
try {
return ugi.doAs(new PrivilegedExceptionAction() {
@Override public InputSplit[] run() throws IOException {
return getSplitsInternal(jobConf, numSplits);
}
});
} catch (InterruptedException e) {
throw new IOException(e);
}
}
}
private InputSplit[] getSplitsInternal(JobConf jobConf, int numSplits) throws IOException {
//obtain delegation tokens for the job
if (UserGroupInformation.getCurrentUser().hasKerberosCredentials()) {
TableMapReduceUtil.initCredentials(jobConf);
}
String hbaseTableName = jobConf.get(HBaseSerDe.HBASE_TABLE_NAME);
Connection conn = ConnectionFactory.createConnection(HBaseConfiguration.create(jobConf));
TableName tableName = TableName.valueOf(hbaseTableName);
initializeTable(conn, tableName);
String hbaseColumnsMapping = jobConf.get(HBaseSerDe.HBASE_COLUMNS_MAPPING);
boolean doColumnRegexMatching = jobConf.getBoolean(HBaseSerDe.HBASE_COLUMNS_REGEX_MATCHING, true);
try {
if (hbaseColumnsMapping == null) {
throw new IOException(HBaseSerDe.HBASE_COLUMNS_MAPPING + " required for HBase Table.");
}
ColumnMappings columnMappings = null;
try {
columnMappings = HBaseSerDe.parseColumnsMapping(hbaseColumnsMapping, doColumnRegexMatching);
} catch (SerDeException e) {
throw new IOException(e);
}
int iKey = columnMappings.getKeyIndex();
int iTimestamp = columnMappings.getTimestampIndex();
ColumnMapping keyMapping = columnMappings.getKeyMapping();
// Take filter pushdown into account while calculating splits; this
// allows us to prune off regions immediately. Note that although
// the Javadoc for the superclass getSplits says that it returns one
// split per region, the implementation actually takes the scan
// definition into account and excludes regions which don't satisfy
// the start/stop row conditions (HBASE-1829).
Scan scan = createFilterScan(jobConf, iKey, iTimestamp, HiveHBaseInputFormatUtil
.getStorageFormatOfKey(keyMapping.mappingSpec,
jobConf.get(HBaseSerDe.HBASE_TABLE_DEFAULT_STORAGE_TYPE, "string")));
// The list of families that have been added to the scan
List addedFamilies = new ArrayList();
// REVIEW: are we supposed to be applying the getReadColumnIDs
// same as in getRecordReader?
for (ColumnMapping colMap : columnMappings) {
if (colMap.hbaseRowKey || colMap.hbaseTimestamp) {
continue;
}
if (colMap.qualifierName == null) {
scan.addFamily(colMap.familyNameBytes);
addedFamilies.add(colMap.familyName);
} else {
if (!addedFamilies.contains(colMap.familyName)) {
// add the column only if the family has not already been added
scan.addColumn(colMap.familyNameBytes, colMap.qualifierNameBytes);
}
}
}
setScan(scan);
Job job = new Job(jobConf);
JobContext jobContext = ShimLoader.getHadoopShims().newJobContext(job);
Path[] tablePaths = FileInputFormat.getInputPaths(jobContext);
List splits = super.getSplits(jobContext);
InputSplit[] results = new InputSplit[splits.size()];
for (int i = 0; i < splits.size(); i++) {
results[i] = new HBaseSplit((TableSplit) splits.get(i), tablePaths[0]);
}
return results;
} finally {
closeTable();
conn.close();
}
}
@Override protected void finalize() throws Throwable {
try {
closeTable();
} finally {
super.finalize();
}
}
}