
hivemall.topicmodel.LDAUDTF Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package hivemall.topicmodel;
import hivemall.utils.lang.Primitives;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.Options;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
@Description(name = "train_lda", value = "_FUNC_(array words[, const string options])"
+ " - Returns a relation consists of ")
public final class LDAUDTF extends ProbabilisticTopicModelBaseUDTF {
public static final double DEFAULT_DELTA = 1E-3d;
// Options
protected float alpha;
protected float eta;
protected long numDocs;
protected double tau0;
protected double kappa;
protected double delta;
public LDAUDTF() {
super();
this.alpha = 1.f / topics;
this.eta = 1.f / topics;
this.numDocs = 0L;
this.tau0 = 64.d;
this.kappa = 0.7;
this.delta = DEFAULT_DELTA;
}
@Override
protected Options getOptions() {
Options opts = super.getOptions();
opts.addOption("alpha", true, "The hyperparameter for theta [default: 1/k]");
opts.addOption("eta", true, "The hyperparameter for beta [default: 1/k]");
opts.addOption("d", "num_docs", true, "The total number of documents [default: auto]");
opts.addOption("tau", "tau0", true,
"The parameter which downweights early iterations [default: 64.0]");
opts.addOption("kappa", true,
"Exponential decay rate (i.e., learning rate) [default: 0.7]");
opts.addOption("delta", true, "Check convergence in the expectation step [default: 1E-3]");
return opts;
}
@Override
protected CommandLine processOptions(ObjectInspector[] argOIs) throws UDFArgumentException {
CommandLine cl = super.processOptions(argOIs);
if (cl != null) {
this.alpha = Primitives.parseFloat(cl.getOptionValue("alpha"), 1.f / topics);
this.eta = Primitives.parseFloat(cl.getOptionValue("eta"), 1.f / topics);
this.numDocs = Primitives.parseLong(cl.getOptionValue("num_docs"), 0L);
this.tau0 = Primitives.parseDouble(cl.getOptionValue("tau0"), 64.d);
if (tau0 <= 0.d) {
throw new UDFArgumentException("'-tau0' must be positive: " + tau0);
}
this.kappa = Primitives.parseDouble(cl.getOptionValue("kappa"), 0.7d);
if (kappa <= 0.5 || kappa > 1.d) {
throw new UDFArgumentException("'-kappa' must be in (0.5, 1.0]: " + kappa);
}
this.delta = Primitives.parseDouble(cl.getOptionValue("delta"), DEFAULT_DELTA);
}
return cl;
}
protected AbstractProbabilisticTopicModel createModel() {
return new OnlineLDAModel(topics, alpha, eta, numDocs, tau0, kappa, delta);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy