All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.esotericsoftware.kryo.util.IntMap Maven / Gradle / Ivy

The newest version!
/*******************************************************************************
 * Copyright 2011 See AUTHORS file.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ******************************************************************************/

package com.esotericsoftware.kryo.util;

/** An unordered map that uses int keys. This implementation is a cuckoo hash map using 3 hashes, random walking, and a small stash
 * for problematic keys. Null values are allowed. No allocation is done except when growing the table size. 
*
* This map performs very fast get, containsKey, and remove (typically O(1), worst case O(log(n))). Put may be a bit slower, * depending on hash collisions. Load factors greater than 0.91 greatly increase the chances the map will have to rehash to the * next higher POT size. * @author Nathan Sweet */ public class IntMap { private static final int PRIME1 = 0xbe1f14b1; private static final int PRIME2 = 0xb4b82e39; private static final int PRIME3 = 0xced1c241; private static final int EMPTY = 0; public int size; int[] keyTable; V[] valueTable; int capacity, stashSize; V zeroValue; boolean hasZeroValue; private float loadFactor; private int hashShift, mask, threshold; private int stashCapacity; private int pushIterations; /** Creates a new map with an initial capacity of 32 and a load factor of 0.8. This map will hold 25 items before growing the * backing table. */ public IntMap () { this(32, 0.8f); } /** Creates a new map with a load factor of 0.8. This map will hold initialCapacity * 0.8 items before growing the backing * table. */ public IntMap (int initialCapacity) { this(initialCapacity, 0.8f); } /** Creates a new map with the specified initial capacity and load factor. This map will hold initialCapacity * loadFactor items * before growing the backing table. */ public IntMap (int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("initialCapacity must be >= 0: " + initialCapacity); if (capacity > 1 << 30) throw new IllegalArgumentException("initialCapacity is too large: " + initialCapacity); capacity = ObjectMap.nextPowerOfTwo(initialCapacity); if (loadFactor <= 0) throw new IllegalArgumentException("loadFactor must be > 0: " + loadFactor); this.loadFactor = loadFactor; threshold = (int)(capacity * loadFactor); mask = capacity - 1; hashShift = 31 - Integer.numberOfTrailingZeros(capacity); stashCapacity = Math.max(3, (int)Math.ceil(Math.log(capacity)) * 2); pushIterations = Math.max(Math.min(capacity, 8), (int)Math.sqrt(capacity) / 8); keyTable = new int[capacity + stashCapacity]; valueTable = (V[])new Object[keyTable.length]; } public V put (int key, V value) { if (key == 0) { V oldValue = zeroValue; zeroValue = value; hasZeroValue = true; size++; return oldValue; } int[] keyTable = this.keyTable; // Check for existing keys. int index1 = key & mask; int key1 = keyTable[index1]; if (key1 == key) { V oldValue = valueTable[index1]; valueTable[index1] = value; return oldValue; } int index2 = hash2(key); int key2 = keyTable[index2]; if (key2 == key) { V oldValue = valueTable[index2]; valueTable[index2] = value; return oldValue; } int index3 = hash3(key); int key3 = keyTable[index3]; if (key3 == key) { V oldValue = valueTable[index3]; valueTable[index3] = value; return oldValue; } // Update key in the stash. for (int i = capacity, n = i + stashSize; i < n; i++) { if (key == keyTable[i]) { V oldValue = valueTable[i]; valueTable[i] = value; return oldValue; } } // Check for empty buckets. if (key1 == EMPTY) { keyTable[index1] = key; valueTable[index1] = value; if (size++ >= threshold) resize(capacity << 1); return null; } if (key2 == EMPTY) { keyTable[index2] = key; valueTable[index2] = value; if (size++ >= threshold) resize(capacity << 1); return null; } if (key3 == EMPTY) { keyTable[index3] = key; valueTable[index3] = value; if (size++ >= threshold) resize(capacity << 1); return null; } push(key, value, index1, key1, index2, key2, index3, key3); return null; } /** Skips checks for existing keys. */ private void putResize (int key, V value) { if (key == 0) { zeroValue = value; hasZeroValue = true; return; } // Check for empty buckets. int index1 = key & mask; int key1 = keyTable[index1]; if (key1 == EMPTY) { keyTable[index1] = key; valueTable[index1] = value; if (size++ >= threshold) resize(capacity << 1); return; } int index2 = hash2(key); int key2 = keyTable[index2]; if (key2 == EMPTY) { keyTable[index2] = key; valueTable[index2] = value; if (size++ >= threshold) resize(capacity << 1); return; } int index3 = hash3(key); int key3 = keyTable[index3]; if (key3 == EMPTY) { keyTable[index3] = key; valueTable[index3] = value; if (size++ >= threshold) resize(capacity << 1); return; } push(key, value, index1, key1, index2, key2, index3, key3); } private void push (int insertKey, V insertValue, int index1, int key1, int index2, int key2, int index3, int key3) { int[] keyTable = this.keyTable; V[] valueTable = this.valueTable; int mask = this.mask; // Push keys until an empty bucket is found. int evictedKey; V evictedValue; int i = 0, pushIterations = this.pushIterations; do { // Replace the key and value for one of the hashes. switch (ObjectMap.random.nextInt(3)) { case 0: evictedKey = key1; evictedValue = valueTable[index1]; keyTable[index1] = insertKey; valueTable[index1] = insertValue; break; case 1: evictedKey = key2; evictedValue = valueTable[index2]; keyTable[index2] = insertKey; valueTable[index2] = insertValue; break; default: evictedKey = key3; evictedValue = valueTable[index3]; keyTable[index3] = insertKey; valueTable[index3] = insertValue; break; } // If the evicted key hashes to an empty bucket, put it there and stop. index1 = evictedKey & mask; key1 = keyTable[index1]; if (key1 == EMPTY) { keyTable[index1] = evictedKey; valueTable[index1] = evictedValue; if (size++ >= threshold) resize(capacity << 1); return; } index2 = hash2(evictedKey); key2 = keyTable[index2]; if (key2 == EMPTY) { keyTable[index2] = evictedKey; valueTable[index2] = evictedValue; if (size++ >= threshold) resize(capacity << 1); return; } index3 = hash3(evictedKey); key3 = keyTable[index3]; if (key3 == EMPTY) { keyTable[index3] = evictedKey; valueTable[index3] = evictedValue; if (size++ >= threshold) resize(capacity << 1); return; } if (++i == pushIterations) break; insertKey = evictedKey; insertValue = evictedValue; } while (true); putStash(evictedKey, evictedValue); } private void putStash (int key, V value) { if (stashSize == stashCapacity) { // Too many pushes occurred and the stash is full, increase the table size. resize(capacity << 1); put(key, value); return; } // Store key in the stash. int index = capacity + stashSize; keyTable[index] = key; valueTable[index] = value; stashSize++; size++; } public V get (int key) { if (key == 0) return zeroValue; int index = key & mask; if (keyTable[index] != key) { index = hash2(key); if (keyTable[index] != key) { index = hash3(key); if (keyTable[index] != key) return getStash(key, null); } } return valueTable[index]; } public V get (int key, V defaultValue) { if (key == 0) return zeroValue; int index = key & mask; if (keyTable[index] != key) { index = hash2(key); if (keyTable[index] != key) { index = hash3(key); if (keyTable[index] != key) return getStash(key, defaultValue); } } return valueTable[index]; } private V getStash (int key, V defaultValue) { int[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) if (keyTable[i] == key) return valueTable[i]; return defaultValue; } public V remove (int key) { if (key == 0) { if (!hasZeroValue) return null; V oldValue = zeroValue; zeroValue = null; hasZeroValue = false; size--; return oldValue; } int index = key & mask; if (keyTable[index] == key) { keyTable[index] = EMPTY; V oldValue = valueTable[index]; valueTable[index] = null; size--; return oldValue; } index = hash2(key); if (keyTable[index] == key) { keyTable[index] = EMPTY; V oldValue = valueTable[index]; valueTable[index] = null; size--; return oldValue; } index = hash3(key); if (keyTable[index] == key) { keyTable[index] = EMPTY; V oldValue = valueTable[index]; valueTable[index] = null; size--; return oldValue; } return removeStash(key); } V removeStash (int key) { int[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) { if (keyTable[i] == key) { V oldValue = valueTable[i]; removeStashIndex(i); size--; return oldValue; } } return null; } void removeStashIndex (int index) { // If the removed location was not last, move the last tuple to the removed location. stashSize--; int lastIndex = capacity + stashSize; if (index < lastIndex) { keyTable[index] = keyTable[lastIndex]; valueTable[index] = valueTable[lastIndex]; valueTable[lastIndex] = null; } else valueTable[index] = null; } public void clear () { int[] keyTable = this.keyTable; V[] valueTable = this.valueTable; for (int i = capacity + stashSize; i-- > 0;) { keyTable[i] = EMPTY; valueTable[i] = null; } size = 0; stashSize = 0; zeroValue = null; hasZeroValue = false; } /** Returns true if the specified value is in the map. Note this traverses the entire map and compares every value, which may be * an expensive operation. * @param identity If true, uses == to compare the specified value with values in the map. If false, uses * {@link #equals(Object)}. */ public boolean containsValue (Object value, boolean identity) { V[] valueTable = this.valueTable; if (value == null) { if (hasZeroValue && zeroValue == null) return true; int[] keyTable = this.keyTable; for (int i = capacity + stashSize; i-- > 0;) if (keyTable[i] != EMPTY && valueTable[i] == null) return true; } else if (identity) { if (value == zeroValue) return true; for (int i = capacity + stashSize; i-- > 0;) if (valueTable[i] == value) return true; } else { if (hasZeroValue && value.equals(zeroValue)) return true; for (int i = capacity + stashSize; i-- > 0;) if (value.equals(valueTable[i])) return true; } return false; } public boolean containsKey (int key) { if (key == 0) return hasZeroValue; int index = key & mask; if (keyTable[index] != key) { index = hash2(key); if (keyTable[index] != key) { index = hash3(key); if (keyTable[index] != key) return containsKeyStash(key); } } return true; } private boolean containsKeyStash (int key) { int[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) if (keyTable[i] == key) return true; return false; } /** Returns the key for the specified value, or notFound if it is not in the map. Note this traverses the entire map * and compares every value, which may be an expensive operation. * @param identity If true, uses == to compare the specified value with values in the map. If false, uses * {@link #equals(Object)}. */ public int findKey (Object value, boolean identity, int notFound) { V[] valueTable = this.valueTable; if (value == null) { if (hasZeroValue && zeroValue == null) return 0; int[] keyTable = this.keyTable; for (int i = capacity + stashSize; i-- > 0;) if (keyTable[i] != EMPTY && valueTable[i] == null) return keyTable[i]; } else if (identity) { if (value == zeroValue) return 0; for (int i = capacity + stashSize; i-- > 0;) if (valueTable[i] == value) return keyTable[i]; } else { if (hasZeroValue && value.equals(zeroValue)) return 0; for (int i = capacity + stashSize; i-- > 0;) if (value.equals(valueTable[i])) return keyTable[i]; } return notFound; } /** Increases the size of the backing array to acommodate the specified number of additional items. Useful before adding many * items to avoid multiple backing array resizes. */ public void ensureCapacity (int additionalCapacity) { int sizeNeeded = size + additionalCapacity; if (sizeNeeded >= threshold) resize(ObjectMap.nextPowerOfTwo((int)(sizeNeeded / loadFactor))); } private void resize (int newSize) { int oldEndIndex = capacity + stashSize; capacity = newSize; threshold = (int)(newSize * loadFactor); mask = newSize - 1; hashShift = 31 - Integer.numberOfTrailingZeros(newSize); stashCapacity = Math.max(3, (int)Math.ceil(Math.log(newSize)) * 2); pushIterations = Math.max(Math.min(newSize, 8), (int)Math.sqrt(newSize) / 8); int[] oldKeyTable = keyTable; V[] oldValueTable = valueTable; keyTable = new int[newSize + stashCapacity]; valueTable = (V[])new Object[newSize + stashCapacity]; size = hasZeroValue ? 1 : 0; stashSize = 0; for (int i = 0; i < oldEndIndex; i++) { int key = oldKeyTable[i]; if (key != EMPTY) putResize(key, oldValueTable[i]); } } private int hash2 (int h) { h *= PRIME2; return (h ^ h >>> hashShift) & mask; } private int hash3 (int h) { h *= PRIME3; return (h ^ h >>> hashShift) & mask; } public String toString () { if (size == 0) return "[]"; StringBuilder buffer = new StringBuilder(32); buffer.append('['); int[] keyTable = this.keyTable; V[] valueTable = this.valueTable; int i = keyTable.length; while (i-- > 0) { int key = keyTable[i]; if (key == EMPTY) continue; buffer.append(key); buffer.append('='); buffer.append(valueTable[i]); break; } while (i-- > 0) { int key = keyTable[i]; if (key == EMPTY) continue; buffer.append(", "); buffer.append(key); buffer.append('='); buffer.append(valueTable[i]); } buffer.append(']'); return buffer.toString(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy