com.esotericsoftware.kryo.util.IntMap Maven / Gradle / Ivy
The newest version!
/*******************************************************************************
* Copyright 2011 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/
package com.esotericsoftware.kryo.util;
/** An unordered map that uses int keys. This implementation is a cuckoo hash map using 3 hashes, random walking, and a small stash
* for problematic keys. Null values are allowed. No allocation is done except when growing the table size.
*
* This map performs very fast get, containsKey, and remove (typically O(1), worst case O(log(n))). Put may be a bit slower,
* depending on hash collisions. Load factors greater than 0.91 greatly increase the chances the map will have to rehash to the
* next higher POT size.
* @author Nathan Sweet */
public class IntMap {
private static final int PRIME1 = 0xbe1f14b1;
private static final int PRIME2 = 0xb4b82e39;
private static final int PRIME3 = 0xced1c241;
private static final int EMPTY = 0;
public int size;
int[] keyTable;
V[] valueTable;
int capacity, stashSize;
V zeroValue;
boolean hasZeroValue;
private float loadFactor;
private int hashShift, mask, threshold;
private int stashCapacity;
private int pushIterations;
/** Creates a new map with an initial capacity of 32 and a load factor of 0.8. This map will hold 25 items before growing the
* backing table. */
public IntMap () {
this(32, 0.8f);
}
/** Creates a new map with a load factor of 0.8. This map will hold initialCapacity * 0.8 items before growing the backing
* table. */
public IntMap (int initialCapacity) {
this(initialCapacity, 0.8f);
}
/** Creates a new map with the specified initial capacity and load factor. This map will hold initialCapacity * loadFactor items
* before growing the backing table. */
public IntMap (int initialCapacity, float loadFactor) {
if (initialCapacity < 0) throw new IllegalArgumentException("initialCapacity must be >= 0: " + initialCapacity);
if (capacity > 1 << 30) throw new IllegalArgumentException("initialCapacity is too large: " + initialCapacity);
capacity = ObjectMap.nextPowerOfTwo(initialCapacity);
if (loadFactor <= 0) throw new IllegalArgumentException("loadFactor must be > 0: " + loadFactor);
this.loadFactor = loadFactor;
threshold = (int)(capacity * loadFactor);
mask = capacity - 1;
hashShift = 31 - Integer.numberOfTrailingZeros(capacity);
stashCapacity = Math.max(3, (int)Math.ceil(Math.log(capacity)) * 2);
pushIterations = Math.max(Math.min(capacity, 8), (int)Math.sqrt(capacity) / 8);
keyTable = new int[capacity + stashCapacity];
valueTable = (V[])new Object[keyTable.length];
}
public V put (int key, V value) {
if (key == 0) {
V oldValue = zeroValue;
zeroValue = value;
hasZeroValue = true;
size++;
return oldValue;
}
int[] keyTable = this.keyTable;
// Check for existing keys.
int index1 = key & mask;
int key1 = keyTable[index1];
if (key1 == key) {
V oldValue = valueTable[index1];
valueTable[index1] = value;
return oldValue;
}
int index2 = hash2(key);
int key2 = keyTable[index2];
if (key2 == key) {
V oldValue = valueTable[index2];
valueTable[index2] = value;
return oldValue;
}
int index3 = hash3(key);
int key3 = keyTable[index3];
if (key3 == key) {
V oldValue = valueTable[index3];
valueTable[index3] = value;
return oldValue;
}
// Update key in the stash.
for (int i = capacity, n = i + stashSize; i < n; i++) {
if (key == keyTable[i]) {
V oldValue = valueTable[i];
valueTable[i] = value;
return oldValue;
}
}
// Check for empty buckets.
if (key1 == EMPTY) {
keyTable[index1] = key;
valueTable[index1] = value;
if (size++ >= threshold) resize(capacity << 1);
return null;
}
if (key2 == EMPTY) {
keyTable[index2] = key;
valueTable[index2] = value;
if (size++ >= threshold) resize(capacity << 1);
return null;
}
if (key3 == EMPTY) {
keyTable[index3] = key;
valueTable[index3] = value;
if (size++ >= threshold) resize(capacity << 1);
return null;
}
push(key, value, index1, key1, index2, key2, index3, key3);
return null;
}
/** Skips checks for existing keys. */
private void putResize (int key, V value) {
if (key == 0) {
zeroValue = value;
hasZeroValue = true;
return;
}
// Check for empty buckets.
int index1 = key & mask;
int key1 = keyTable[index1];
if (key1 == EMPTY) {
keyTable[index1] = key;
valueTable[index1] = value;
if (size++ >= threshold) resize(capacity << 1);
return;
}
int index2 = hash2(key);
int key2 = keyTable[index2];
if (key2 == EMPTY) {
keyTable[index2] = key;
valueTable[index2] = value;
if (size++ >= threshold) resize(capacity << 1);
return;
}
int index3 = hash3(key);
int key3 = keyTable[index3];
if (key3 == EMPTY) {
keyTable[index3] = key;
valueTable[index3] = value;
if (size++ >= threshold) resize(capacity << 1);
return;
}
push(key, value, index1, key1, index2, key2, index3, key3);
}
private void push (int insertKey, V insertValue, int index1, int key1, int index2, int key2, int index3, int key3) {
int[] keyTable = this.keyTable;
V[] valueTable = this.valueTable;
int mask = this.mask;
// Push keys until an empty bucket is found.
int evictedKey;
V evictedValue;
int i = 0, pushIterations = this.pushIterations;
do {
// Replace the key and value for one of the hashes.
switch (ObjectMap.random.nextInt(3)) {
case 0:
evictedKey = key1;
evictedValue = valueTable[index1];
keyTable[index1] = insertKey;
valueTable[index1] = insertValue;
break;
case 1:
evictedKey = key2;
evictedValue = valueTable[index2];
keyTable[index2] = insertKey;
valueTable[index2] = insertValue;
break;
default:
evictedKey = key3;
evictedValue = valueTable[index3];
keyTable[index3] = insertKey;
valueTable[index3] = insertValue;
break;
}
// If the evicted key hashes to an empty bucket, put it there and stop.
index1 = evictedKey & mask;
key1 = keyTable[index1];
if (key1 == EMPTY) {
keyTable[index1] = evictedKey;
valueTable[index1] = evictedValue;
if (size++ >= threshold) resize(capacity << 1);
return;
}
index2 = hash2(evictedKey);
key2 = keyTable[index2];
if (key2 == EMPTY) {
keyTable[index2] = evictedKey;
valueTable[index2] = evictedValue;
if (size++ >= threshold) resize(capacity << 1);
return;
}
index3 = hash3(evictedKey);
key3 = keyTable[index3];
if (key3 == EMPTY) {
keyTable[index3] = evictedKey;
valueTable[index3] = evictedValue;
if (size++ >= threshold) resize(capacity << 1);
return;
}
if (++i == pushIterations) break;
insertKey = evictedKey;
insertValue = evictedValue;
} while (true);
putStash(evictedKey, evictedValue);
}
private void putStash (int key, V value) {
if (stashSize == stashCapacity) {
// Too many pushes occurred and the stash is full, increase the table size.
resize(capacity << 1);
put(key, value);
return;
}
// Store key in the stash.
int index = capacity + stashSize;
keyTable[index] = key;
valueTable[index] = value;
stashSize++;
size++;
}
public V get (int key) {
if (key == 0) return zeroValue;
int index = key & mask;
if (keyTable[index] != key) {
index = hash2(key);
if (keyTable[index] != key) {
index = hash3(key);
if (keyTable[index] != key) return getStash(key, null);
}
}
return valueTable[index];
}
public V get (int key, V defaultValue) {
if (key == 0) return zeroValue;
int index = key & mask;
if (keyTable[index] != key) {
index = hash2(key);
if (keyTable[index] != key) {
index = hash3(key);
if (keyTable[index] != key) return getStash(key, defaultValue);
}
}
return valueTable[index];
}
private V getStash (int key, V defaultValue) {
int[] keyTable = this.keyTable;
for (int i = capacity, n = i + stashSize; i < n; i++)
if (keyTable[i] == key) return valueTable[i];
return defaultValue;
}
public V remove (int key) {
if (key == 0) {
if (!hasZeroValue) return null;
V oldValue = zeroValue;
zeroValue = null;
hasZeroValue = false;
size--;
return oldValue;
}
int index = key & mask;
if (keyTable[index] == key) {
keyTable[index] = EMPTY;
V oldValue = valueTable[index];
valueTable[index] = null;
size--;
return oldValue;
}
index = hash2(key);
if (keyTable[index] == key) {
keyTable[index] = EMPTY;
V oldValue = valueTable[index];
valueTable[index] = null;
size--;
return oldValue;
}
index = hash3(key);
if (keyTable[index] == key) {
keyTable[index] = EMPTY;
V oldValue = valueTable[index];
valueTable[index] = null;
size--;
return oldValue;
}
return removeStash(key);
}
V removeStash (int key) {
int[] keyTable = this.keyTable;
for (int i = capacity, n = i + stashSize; i < n; i++) {
if (keyTable[i] == key) {
V oldValue = valueTable[i];
removeStashIndex(i);
size--;
return oldValue;
}
}
return null;
}
void removeStashIndex (int index) {
// If the removed location was not last, move the last tuple to the removed location.
stashSize--;
int lastIndex = capacity + stashSize;
if (index < lastIndex) {
keyTable[index] = keyTable[lastIndex];
valueTable[index] = valueTable[lastIndex];
valueTable[lastIndex] = null;
} else
valueTable[index] = null;
}
public void clear () {
int[] keyTable = this.keyTable;
V[] valueTable = this.valueTable;
for (int i = capacity + stashSize; i-- > 0;) {
keyTable[i] = EMPTY;
valueTable[i] = null;
}
size = 0;
stashSize = 0;
zeroValue = null;
hasZeroValue = false;
}
/** Returns true if the specified value is in the map. Note this traverses the entire map and compares every value, which may be
* an expensive operation.
* @param identity If true, uses == to compare the specified value with values in the map. If false, uses
* {@link #equals(Object)}. */
public boolean containsValue (Object value, boolean identity) {
V[] valueTable = this.valueTable;
if (value == null) {
if (hasZeroValue && zeroValue == null) return true;
int[] keyTable = this.keyTable;
for (int i = capacity + stashSize; i-- > 0;)
if (keyTable[i] != EMPTY && valueTable[i] == null) return true;
} else if (identity) {
if (value == zeroValue) return true;
for (int i = capacity + stashSize; i-- > 0;)
if (valueTable[i] == value) return true;
} else {
if (hasZeroValue && value.equals(zeroValue)) return true;
for (int i = capacity + stashSize; i-- > 0;)
if (value.equals(valueTable[i])) return true;
}
return false;
}
public boolean containsKey (int key) {
if (key == 0) return hasZeroValue;
int index = key & mask;
if (keyTable[index] != key) {
index = hash2(key);
if (keyTable[index] != key) {
index = hash3(key);
if (keyTable[index] != key) return containsKeyStash(key);
}
}
return true;
}
private boolean containsKeyStash (int key) {
int[] keyTable = this.keyTable;
for (int i = capacity, n = i + stashSize; i < n; i++)
if (keyTable[i] == key) return true;
return false;
}
/** Returns the key for the specified value, or notFound if it is not in the map. Note this traverses the entire map
* and compares every value, which may be an expensive operation.
* @param identity If true, uses == to compare the specified value with values in the map. If false, uses
* {@link #equals(Object)}. */
public int findKey (Object value, boolean identity, int notFound) {
V[] valueTable = this.valueTable;
if (value == null) {
if (hasZeroValue && zeroValue == null) return 0;
int[] keyTable = this.keyTable;
for (int i = capacity + stashSize; i-- > 0;)
if (keyTable[i] != EMPTY && valueTable[i] == null) return keyTable[i];
} else if (identity) {
if (value == zeroValue) return 0;
for (int i = capacity + stashSize; i-- > 0;)
if (valueTable[i] == value) return keyTable[i];
} else {
if (hasZeroValue && value.equals(zeroValue)) return 0;
for (int i = capacity + stashSize; i-- > 0;)
if (value.equals(valueTable[i])) return keyTable[i];
}
return notFound;
}
/** Increases the size of the backing array to acommodate the specified number of additional items. Useful before adding many
* items to avoid multiple backing array resizes. */
public void ensureCapacity (int additionalCapacity) {
int sizeNeeded = size + additionalCapacity;
if (sizeNeeded >= threshold) resize(ObjectMap.nextPowerOfTwo((int)(sizeNeeded / loadFactor)));
}
private void resize (int newSize) {
int oldEndIndex = capacity + stashSize;
capacity = newSize;
threshold = (int)(newSize * loadFactor);
mask = newSize - 1;
hashShift = 31 - Integer.numberOfTrailingZeros(newSize);
stashCapacity = Math.max(3, (int)Math.ceil(Math.log(newSize)) * 2);
pushIterations = Math.max(Math.min(newSize, 8), (int)Math.sqrt(newSize) / 8);
int[] oldKeyTable = keyTable;
V[] oldValueTable = valueTable;
keyTable = new int[newSize + stashCapacity];
valueTable = (V[])new Object[newSize + stashCapacity];
size = hasZeroValue ? 1 : 0;
stashSize = 0;
for (int i = 0; i < oldEndIndex; i++) {
int key = oldKeyTable[i];
if (key != EMPTY) putResize(key, oldValueTable[i]);
}
}
private int hash2 (int h) {
h *= PRIME2;
return (h ^ h >>> hashShift) & mask;
}
private int hash3 (int h) {
h *= PRIME3;
return (h ^ h >>> hashShift) & mask;
}
public String toString () {
if (size == 0) return "[]";
StringBuilder buffer = new StringBuilder(32);
buffer.append('[');
int[] keyTable = this.keyTable;
V[] valueTable = this.valueTable;
int i = keyTable.length;
while (i-- > 0) {
int key = keyTable[i];
if (key == EMPTY) continue;
buffer.append(key);
buffer.append('=');
buffer.append(valueTable[i]);
break;
}
while (i-- > 0) {
int key = keyTable[i];
if (key == EMPTY) continue;
buffer.append(", ");
buffer.append(key);
buffer.append('=');
buffer.append(valueTable[i]);
}
buffer.append(']');
return buffer.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy