drv.ArrayFrontCodedList.drv Maven / Gradle / Ivy
/*
* Copyright (C) 2002-2017 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
import it.unimi.dsi.fastutil.objects.AbstractObjectListIterator;
import it.unimi.dsi.fastutil.objects.AbstractObjectList;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.longs.LongArrays;
import java.io.Serializable;
import java.util.Iterator;
import java.util.Collection;
import java.util.NoSuchElementException;
import java.util.RandomAccess;
/** Compact storage of lists of arrays using front coding.
*
* This class stores immutably a list of arrays in a single large array
* using front coding (of course, the compression will be reasonable only if
* the list is sorted lexicographically—see below). It implements an
* immutable type-specific list that returns the i-th array when
* calling {@link #get(int) get(i)}. The returned array may be
* freely modified.
*
*
Front coding is based on the idea that if the i-th and the
* (i+1)-th array have a common prefix, we might store the length
* of the common prefix, and then the rest of the second array.
*
*
This approach, of course, requires that once in a while an array is
* stored entirely. The ratio of a front-coded list defines how
* often this happens (once every {@link #ratio()} arrays). A higher ratio
* means more compression, but means also a longer access time, as more arrays
* have to be probed to build the result. Note that we must build an array
* every time {@link #get(int)} is called, but this class provides also methods
* that extract one of the stored arrays in a given array, reducing garbage
* collection. See the documentation of the family of get()
* methods.
*
*
By setting the ratio to 1 we actually disable front coding: however, we
* still have a data structure storing large list of arrays with a reduced
* overhead (just one integer per array, plus the space required for lengths).
*
*
Note that the typical usage of front-coded lists is under the form of
* serialized objects; usually, the data that has to be compacted is processed
* offline, and the resulting structure is stored permanently. Since the
* pointer array is not stored, the serialized format is very small.
*
*
Implementation Details
*
* All arrays are stored in a {@linkplain it.unimi.dsi.fastutil.BigArrays big array}. A separate array of pointers
* indexes arrays whose position is a multiple of the ratio: thus, a higher ratio
* means also less pointers.
*
*
More in detail, an array whose position is a multiple of the ratio is
* stored as the array length, followed by the elements of the array. The array
* length is coded by a simple variable-length list of k-1 bit
* blocks, where k is the number of bits of the underlying primitive
* type. All other arrays are stored as follows: let common
the
* length of the maximum common prefix between the array and its predecessor.
* Then we store the array length decremented by common
, followed
* by common
, followed by the array elements whose index is
* greater than or equal to common
. For instance, if we store
* foo
, foobar
, football
and
* fool
in a front-coded character-array list with ratio 3, the
* character array will contain
*
*
* 3 f o o 3 3 b a r 5 3 t b a l l 4 f o o l
*
*/
public class ARRAY_FRONT_CODED_LIST extends AbstractObjectList implements Serializable, Cloneable, RandomAccess {
private static final long serialVersionUID = 1L;
/** The number of arrays in the list. */
protected final int n;
/** The ratio of this front-coded list. */
protected final int ratio;
/** The big array containing the compressed arrays. */
protected final KEY_TYPE[][] array;
/** The pointers to entire arrays in the list. */
protected transient long[] p;
/** Creates a new front-coded list containing the arrays returned by the given iterator.
*
* @param arrays an iterator returning arrays.
* @param ratio the desired ratio.
*/
public ARRAY_FRONT_CODED_LIST(final Iterator arrays, final int ratio) {
if (ratio < 1) throw new IllegalArgumentException("Illegal ratio (" + ratio + ")");
KEY_TYPE[][] array = BIG_ARRAYS.EMPTY_BIG_ARRAY;
long[] p = LongArrays.EMPTY_ARRAY;
KEY_TYPE[][] a = new KEY_TYPE[2][];
long curSize = 0;
int n = 0, b = 0, common, length, minLength;
while(arrays.hasNext()) {
a[b] = arrays.next();
length = a[b].length;
if (n % ratio == 0) {
p = LongArrays.grow(p, n / ratio + 1);
p[n / ratio] = curSize;
array = BIG_ARRAYS.grow(array, curSize + count(length) + length, curSize);
curSize += writeInt(array, length, curSize);
BIG_ARRAYS.copyToBig(a[b], 0, array, curSize, length);
curSize += length;
}
else {
minLength = a[1 - b].length;
if (length < minLength) minLength = length;
for(common = 0; common < minLength; common++) if (a[0][common] != a[1][common]) break;
length -= common;
array = BIG_ARRAYS.grow(array, curSize + count(length) + count(common) + length, curSize);
curSize += writeInt(array, length, curSize);
curSize += writeInt(array, common, curSize);
BIG_ARRAYS.copyToBig(a[b], common, array, curSize, length);
curSize += length;
}
b = 1 - b;
n++;
}
this.n = n;
this.ratio = ratio;
this.array = BIG_ARRAYS.trim(array, curSize);
this.p = LongArrays.trim(p, (n + ratio - 1) / ratio);
}
/** Creates a new front-coded list containing the arrays in the given collection.
*
* @param c a collection containing arrays.
* @param ratio the desired ratio.
*/
public ARRAY_FRONT_CODED_LIST(final Collection c, final int ratio) {
this(c.iterator(), ratio);
}
/* The following (rather messy) methods implements the encoding of arbitrary integers inside a big array.
* Unfortunately, we have to specify different codes for almost every type. */
/** Reads a coded length.
* @param a the data big array.
* @param pos the starting position.
* @return the length coded at pos
.
*/
private static int readInt(final KEY_TYPE a[][], long pos) {
#if KEY_CLASS_Integer
return IntBigArrays.get(a, pos);
#elif KEY_CLASS_Long
return (int)LongBigArrays.get(a, pos);
#elif KEY_CLASS_Character
final char c0 = CharBigArrays.get(a, pos);
return c0 < 0x8000 ? c0 : (c0 & 0x7FFF) << 16 | CharBigArrays.get(a, pos + 1);
#elif KEY_CLASS_Short
final short s0 = ShortBigArrays.get(a, pos);
return s0 >= 0 ? s0 : s0 << 16 | (ShortBigArrays.get(a, pos + 1) & 0xFFFF);
#else
final byte b0 = ByteBigArrays.get(a, pos);
if (b0 >= 0) return b0;
final byte b1 = ByteBigArrays.get(a, pos + 1);
if (b1 >= 0) return (- b0 - 1) << 7 | b1;
final byte b2 = ByteBigArrays.get(a, pos + 2);
if (b2 >= 0) return (- b0 - 1) << 14 | (- b1 - 1) << 7 | b2;
final byte b3 = ByteBigArrays.get(a, pos + 3);
if (b3 >= 0) return (- b0 - 1) << 21 | (- b1 - 1) << 14 | (- b2 - 1) << 7 | b3;
return (- b0 - 1) << 28 | (- b1 - 1) << 21 | (- b2 - 1) << 14 | (- b3 - 1) << 7 | ByteBigArrays.get(a, pos + 4);
#endif
}
/** Computes the number of elements coding a given length.
* @param length the length to be coded.
* @return the number of elements coding length
.
*/
private static int count(final int length) {
#if KEY_CLASS_Integer || KEY_CLASS_Long
return 1;
#elif KEY_CLASS_Character || KEY_CLASS_Short
return length < (1 << 15) ? 1 : 2;
#else
if (length < (1 << 7)) return 1;
if (length < (1 << 14)) return 2;
if (length < (1 << 21)) return 3;
if (length < (1 << 28)) return 4;
return 5;
#endif
}
/** Writes a length.
* @param a the data array.
* @param length the length to be written.
* @param pos the starting position.
* @return the number of elements coding length
.
*/
private static int writeInt(final KEY_TYPE a[][], int length, long pos) {
#if KEY_CLASS_Long
LongBigArrays.set(a, pos, length);
return 1;
#elif KEY_CLASS_Integer
IntBigArrays.set(a, pos, length);
return 1;
#elif KEY_CLASS_Character
if (length < (1 << 15)) {
CharBigArrays.set(a, pos, (char)length);
return 1;
}
CharBigArrays.set(a, pos++, (char)(length >>> 16 | 0x8000));
CharBigArrays.set(a, pos, (char)(length & 0xFFFF));
return 2;
#elif KEY_CLASS_Short
if (length < (1 << 15)) {
ShortBigArrays.set(a, pos, (short)length);
return 1;
}
ShortBigArrays.set(a, pos++, (short)(- (length >>> 16) - 1));
ShortBigArrays.set(a, pos, (short)(length & 0xFFFF));
return 2;
#else
final int count = count(length);
ByteBigArrays.set(a, pos + count - 1, (byte)(length & 0x7F));
if (count != 1) {
int i = count - 1;
while(i-- != 0) {
length >>>= 7;
ByteBigArrays.set(a, pos + i, (byte)(- (length & 0x7F) - 1));
}
}
return count;
#endif
}
/** Returns the ratio of this list.
*
* @return the ratio of this list.
*/
public int ratio() {
return ratio;
}
/** Computes the length of the array at the given index.
*
* This private version of {@link #arrayLength(int)} does not check its argument.
*
* @param index an index.
* @return the length of the index
-th array.
*/
private int length(final int index) {
final KEY_TYPE[][] array = this.array;
final int delta = index % ratio; // The index into the p array, and the delta inside the block.
long pos = p[index / ratio]; // The position into the array of the first entire word before the index-th.
int length = readInt(array, pos);
if (delta == 0) return length;
// First of all, we recover the array length and the maximum amount of copied elements.
int common;
pos += count(length) + length;
length = readInt(array, pos);
common = readInt(array, pos + count(length));
for(int i = 0; i < delta - 1; i++) {
pos += count(length) + count(common) + length;
length = readInt(array, pos);
common = readInt(array, pos + count(length));
}
return length + common;
}
/** Computes the length of the array at the given index.
*
* @param index an index.
* @return the length of the index
-th array.
*/
public int arrayLength(final int index) {
ensureRestrictedIndex(index);
return length(index);
}
/** Extracts the array at the given index.
*
* @param index an index.
* @param a the array that will store the result (we assume that it can hold the result).
* @param offset an offset into a
where elements will be store.
* @param length a maximum number of elements to store in a
.
* @return the length of the extracted array.
*/
private int extract(final int index, final KEY_TYPE a[], final int offset, final int length) {
final int delta = index % ratio; // The delta inside the block.
final long startPos = p[index / ratio]; // The position into the array of the first entire word before the index-th.
long pos, prevArrayPos;
int arrayLength = readInt(array, pos = startPos), currLen = 0, actualCommon;
if (delta == 0) {
pos = p[index / ratio] + count(arrayLength);
BIG_ARRAYS.copyFromBig(array, pos, a, offset, Math.min(length, arrayLength));
return arrayLength;
}
int common = 0;
for(int i = 0; i < delta; i++) {
prevArrayPos = pos + count(arrayLength) + (i != 0 ? count(common) : 0);
pos = prevArrayPos + arrayLength;
arrayLength = readInt(array, pos);
common = readInt(array, pos + count(arrayLength));
actualCommon = Math.min(common, length);
if (actualCommon <= currLen) currLen = actualCommon;
else {
BIG_ARRAYS.copyFromBig(array, prevArrayPos, a, currLen + offset, actualCommon - currLen);
currLen = actualCommon;
}
}
if (currLen < length) BIG_ARRAYS.copyFromBig(array, pos + count(arrayLength) + count(common), a, currLen + offset, Math.min(arrayLength, length - currLen));
return arrayLength + common;
}
/** {@inheritDoc}
*
This implementation delegates to {@link #getArray(int)}. */
@Override
public KEY_TYPE[] get(final int index) {
return getArray(index);
}
/** Returns an array stored in this front-coded list.
*
* @param index an index.
* @return the corresponding array stored in this front-coded list.
*/
public KEY_TYPE[] getArray(final int index) {
ensureRestrictedIndex(index);
final int length = length(index);
final KEY_TYPE a[] = new KEY_TYPE[length];
extract(index, a, 0, length);
return a;
}
/** Stores in the given array elements from an array stored in this front-coded list.
*
* @param index an index.
* @param a the array that will store the result.
* @param offset an offset into a
where elements will be store.
* @param length a maximum number of elements to store in a
.
* @return if a
can hold the extracted elements, the number of extracted elements;
* otherwise, the number of remaining elements with the sign changed.
*/
public int get(final int index, final KEY_TYPE[] a, final int offset, final int length) {
ensureRestrictedIndex(index);
ARRAYS.ensureOffsetLength(a, offset, length);
final int arrayLength = extract(index, a, offset, length);
if (length >= arrayLength) return arrayLength;
return length - arrayLength;
}
/** Stores in the given array an array stored in this front-coded list.
*
* @param index an index.
* @param a the array that will store the content of the result (we assume that it can hold the result).
* @return if a
can hold the extracted elements, the number of extracted elements;
* otherwise, the number of remaining elements with the sign changed.
*/
public int get(final int index, final KEY_TYPE[] a) {
return get(index, a, 0, a.length);
}
@Override
public int size() {
return n;
}
@Override
public ObjectListIterator listIterator(final int start) {
ensureIndex(start);
return new AbstractObjectListIterator() {
KEY_TYPE s[] = ARRAYS.EMPTY_ARRAY;
int i = 0;
long pos = 0;
boolean inSync; // Whether the current value in a is the string just before the next to be produced.
{
if (start != 0) {
if (start == n) i = start; // If we start at the end, we do nothing.
else {
pos = p[start / ratio];
int j = start % ratio;
i = start - j;
while(j-- != 0) next();
}
}
}
@Override
public boolean hasNext() {
return i < n;
}
@Override
public boolean hasPrevious() {
return i > 0;
}
@Override
public int previousIndex() {
return i - 1;
}
@Override
public int nextIndex() {
return i;
}
@Override
public KEY_TYPE[] next() {
int length, common;
if (! hasNext()) throw new NoSuchElementException();
if (i % ratio == 0) {
pos = p[i / ratio];
length = readInt(array, pos);
s = ARRAYS.ensureCapacity(s, length, 0);
BIG_ARRAYS.copyFromBig(array, pos + count(length), s, 0, length);
pos += length + count(length);
inSync = true;
}
else {
if (inSync) {
length = readInt(array, pos);
common = readInt(array, pos + count(length));
s = ARRAYS.ensureCapacity(s, length + common, common);
BIG_ARRAYS.copyFromBig(array, pos + count(length) + count (common), s, common, length);
pos += count(length) + count(common) + length;
length += common;
}
else {
s = ARRAYS.ensureCapacity(s, length = length(i), 0);
extract(i, s, 0, length);
}
}
i++;
return ARRAYS.copy(s, 0, length);
}
@Override
public KEY_TYPE[] previous() {
if (! hasPrevious()) throw new NoSuchElementException();
inSync = false;
return getArray(--i);
}
};
}
/** Returns a copy of this list.
*
* @return a copy of this list.
*/
@Override
public ARRAY_FRONT_CODED_LIST clone() {
return this;
}
@Override
public String toString() {
final StringBuffer s = new StringBuffer();
s.append("[");
for(int i = 0; i < n; i++) {
if (i != 0) s.append(", ");
s.append(ARRAY_LIST.wrap(getArray(i)).toString());
}
s.append("]");
return s.toString();
}
/** Computes the pointer array using the currently set ratio, number of elements and underlying array.
*
* @return the computed pointer array.
*/
protected long[] rebuildPointerArray() {
final long[] p = new long[(n + ratio - 1) / ratio];
final KEY_TYPE a[][] = array;
int length, count;
long pos = 0;
for(int i = 0, j = 0, skip = ratio - 1; i < n; i++) {
length = readInt(a, pos);
count = count(length);
if (++skip == ratio) {
skip = 0;
p[j++] = pos;
pos += count + length;
}
else pos += count + count(readInt(a, pos + count)) + length;
}
return p;
}
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
// Rebuild pointer array
p = rebuildPointerArray();
}
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random(seed);
private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
return r.NEXT_KEY();
#elif KEY_CLASS_Object
return Integer.toBinaryString(r.nextInt());
#else
return new java.io.Serializable() {};
#endif
}
private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00");
private static java.text.FieldPosition fp = new java.text.FieldPosition(0);
private static String format(double d) {
StringBuffer s = new StringBuffer();
return format.format(d, s, fp).toString();
}
private static void speedTest(int n, boolean comp) {
System.out.println("There are presently no speed tests for this class.");
}
private static void fatal(String msg) {
System.out.println(msg);
System.exit(1);
}
private static void ensure(boolean cond, String msg) {
if (cond) return;
fatal(msg);
}
private static boolean contentEquals(java.util.List x, java.util.List y) {
if (x.size() != y.size()) return false;
for(int i = 0; i < x.size(); i++) if (! java.util.Arrays.equals((KEY_TYPE[])x.get(i), (KEY_TYPE[])y.get(i))) return false;
return true;
}
private static int l[];
private static KEY_TYPE[][] a;
private static void test(int n) {
int c;
l = new int[n];
a = new KEY_TYPE[n][];
for(int i = 0; i < n; i++) l[i] = (int)(Math.abs(r.nextGaussian())*32);
for(int i = 0; i < n; i++) a[i] = new KEY_TYPE[l[i]];
for(int i = 0; i < n; i++) for(int j = 0; j < l[i]; j++) a[i][j] = genKey();
ARRAY_FRONT_CODED_LIST m = new ARRAY_FRONT_CODED_LIST(it.unimi.dsi.fastutil.objects.ObjectIterators.wrap(a), r.nextInt(4) + 1);
it.unimi.dsi.fastutil.objects.ObjectArrayList t = new it.unimi.dsi.fastutil.objects.ObjectArrayList(a);
//System.out.println(m);
//for(i = 0; i < t.size(); i++) System.out.println(ARRAY_LIST.wrap((KEY_TYPE[])t.get(i)));
/* Now we check that m actually holds that data. */
ensure(contentEquals(m, t), "Error (" + seed + "): m does not equal t at creation");
/* Now we check cloning. */
ensure(contentEquals(m, (java.util.List)m.clone()), "Error (" + seed + "): m does not equal m.clone()");
/* Now we play with iterators. */
{
ObjectListIterator i;
java.util.ListIterator j;
Object J;
i = m.listIterator();
j = t.listIterator();
for(int k = 0; k < 2*n; k++) {
ensure(i.hasNext() == j.hasNext(), "Error (" + seed + "): divergence in hasNext()");
ensure(i.hasPrevious() == j.hasPrevious(), "Error (" + seed + "): divergence in hasPrevious()");
if (r.nextFloat() < .8 && i.hasNext()) {
ensure(java.util.Arrays.equals((KEY_TYPE[])i.next(), (KEY_TYPE[])j.next()), "Error (" + seed + "): divergence in next()");
}
else if (r.nextFloat() < .2 && i.hasPrevious()) {
ensure(java.util.Arrays.equals((KEY_TYPE[])i.previous(), (KEY_TYPE[])j.previous()), "Error (" + seed + "): divergence in previous()");
}
ensure(i.nextIndex() == j.nextIndex(), "Error (" + seed + "): divergence in nextIndex()");
ensure(i.previousIndex() == j.previousIndex(), "Error (" + seed + "): divergence in previousIndex()");
}
}
{
Object previous = null;
Object I, J;
int from = r.nextInt(m.size() +1);
ObjectListIterator i;
java.util.ListIterator j;
i = m.listIterator(from);
j = t.listIterator(from);
for(int k = 0; k < 2*n; k++) {
ensure(i.hasNext() == j.hasNext(), "Error (" + seed + "): divergence in hasNext() (iterator with starting point " + from + ")");
ensure(i.hasPrevious() == j.hasPrevious() , "Error (" + seed + "): divergence in hasPrevious() (iterator with starting point " + from + ")");
if (r.nextFloat() < .8 && i.hasNext()) {
ensure(java.util.Arrays.equals((KEY_TYPE[])i.next(), (KEY_TYPE[])j.next()), "Error (" + seed + "): divergence in next() (iterator with starting point " + from + ")");
//System.err.println("Done next " + I + " " + J + " " + badPrevious);
}
else if (r.nextFloat() < .2 && i.hasPrevious()) {
ensure(java.util.Arrays.equals((KEY_TYPE[])i.previous(), (KEY_TYPE[])j.previous()), "Error (" + seed + "): divergence in previous() (iterator with starting point " + from + ")");
}
}
}
try {
java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test");
java.io.OutputStream os = new java.io.FileOutputStream(ff);
java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);
oos.writeObject(m);
oos.close();
java.io.InputStream is = new java.io.FileInputStream(ff);
java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);
m = (ARRAY_FRONT_CODED_LIST)ois.readObject();
ois.close();
ff.delete();
}
catch(Exception e) {
e.printStackTrace();
System.exit(1);
}
ensure(contentEquals(m, t), "Error (" + seed + "): m does not equal t after save/read");
System.out.println("Test OK");
return;
}
public static void main(String args[]) {
int n = Integer.parseInt(args[1]);
if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2]));
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0]));
else if ("test".equals(args[0])) test(n);
} catch(Throwable e) {
e.printStackTrace(System.err);
System.err.println("seed: " + seed);
}
}
#endif
}