drv.HeapIndirectPriorityQueue.drv Maven / Gradle / Ivy
/*
* Copyright (C) 2003-2017 Paolo Boldi and Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
#if KEY_CLASS_Object
import java.util.Comparator;
#endif
import it.unimi.dsi.fastutil.ints.IntArrays;
import java.util.Arrays;
import java.util.NoSuchElementException;
/** A type-specific heap-based indirect priority queue.
*
* Instances of this class use an additional inversion array, of the same length of the reference array,
* to keep track of the heap position containing a given element of the reference array. The priority queue is
* represented using a heap. The heap is enlarged as needed, but it is never
* shrunk. Use the {@link #trim()} method to reduce its size, if necessary.
*
*
This implementation does not allow one to enqueue several times the same index.
*/
public class HEAP_INDIRECT_PRIORITY_QUEUE KEY_GENERIC extends HEAP_SEMI_INDIRECT_PRIORITY_QUEUE KEY_GENERIC {
/** The inversion array. */
protected final int inv[];
/** Creates a new empty queue with a given capacity and comparator.
*
* @param refArray the reference array.
* @param capacity the initial capacity of this queue.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
public HEAP_INDIRECT_PRIORITY_QUEUE(KEY_GENERIC_TYPE[] refArray, int capacity, KEY_COMPARATOR KEY_SUPER_GENERIC c) {
super(refArray, capacity, c);
if (capacity > 0) this.heap = new int[capacity];
this.c = c;
this.inv = new int[refArray.length];
Arrays.fill(inv, -1);
}
/** Creates a new empty queue with a given capacity and using the natural order.
*
* @param refArray the reference array.
* @param capacity the initial capacity of this queue.
*/
public HEAP_INDIRECT_PRIORITY_QUEUE(KEY_GENERIC_TYPE[] refArray, int capacity) {
this(refArray, capacity, null);
}
/** Creates a new empty queue with capacity equal to the length of the reference array and a given comparator.
*
* @param refArray the reference array.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
public HEAP_INDIRECT_PRIORITY_QUEUE(KEY_GENERIC_TYPE[] refArray, KEY_COMPARATOR KEY_SUPER_GENERIC c) {
this(refArray, refArray.length, c);
}
/** Creates a new empty queue with capacity equal to the length of the reference array and using the natural order.
* @param refArray the reference array.
*/
public HEAP_INDIRECT_PRIORITY_QUEUE(KEY_GENERIC_TYPE[] refArray) {
this(refArray, refArray.length, null);
}
/** Wraps a given array in a queue using a given comparator.
*
*
The queue returned by this method will be backed by the given array.
* The first size
element of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param refArray the reference array.
* @param a an array of indices into refArray
.
* @param size the number of elements to be included in the queue.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
public HEAP_INDIRECT_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] refArray, final int[] a, final int size, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
this(refArray, 0, c);
this.heap = a;
this.size = size;
int i = size;
while(i-- != 0) {
if (inv[a[i]] != -1) throw new IllegalArgumentException("Index " + a[i] + " appears twice in the heap");
inv[a[i]] = i;
}
INDIRECT_HEAPS.makeHeap(refArray, a, inv, size, c);
}
/** Wraps a given array in a queue using a given comparator.
*
*
The queue returned by this method will be backed by the given array.
* The elements of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param refArray the reference array.
* @param a an array of indices into refArray
.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
public HEAP_INDIRECT_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] refArray, final int[] a, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
this(refArray, a, a.length, c);
}
/** Wraps a given array in a queue using the natural order.
*
*
The queue returned by this method will be backed by the given array.
* The first size
element of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param refArray the reference array.
* @param a an array of indices into refArray
.
* @param size the number of elements to be included in the queue.
*/
public HEAP_INDIRECT_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] refArray, final int[] a, int size) {
this(refArray, a, size, null);
}
/** Wraps a given array in a queue using the natural order.
*
*
The queue returned by this method will be backed by the given array.
* The elements of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param refArray the reference array.
* @param a an array of indices into refArray
.
*/
public HEAP_INDIRECT_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] refArray, final int[] a) {
this(refArray, a, a.length);
}
@Override
public void enqueue(final int x) {
if (inv[x] >= 0) throw new IllegalArgumentException("Index " + x + " belongs to the queue");
if (size == heap.length) heap = IntArrays.grow(heap, size + 1);
inv[heap[size] = x] = size++;
INDIRECT_HEAPS.upHeap(refArray, heap, inv, size, size - 1, c);
}
@Override
public boolean contains(final int index) {
return inv[index] >= 0;
}
@Override
public int dequeue() {
if (size == 0) throw new NoSuchElementException();
final int result = heap[0];
if (--size != 0) inv[heap[0] = heap[size]] = 0;
inv[result] = -1;
if (size != 0) INDIRECT_HEAPS.downHeap(refArray, heap, inv, size, 0, c);
return result;
}
@Override
public void changed() {
INDIRECT_HEAPS.downHeap(refArray, heap, inv, size, 0, c);
}
@Override
public void changed(final int index) {
final int pos = inv[index];
if (pos < 0) throw new IllegalArgumentException("Index " + index + " does not belong to the queue");
final int newPos = INDIRECT_HEAPS.upHeap(refArray, heap, inv, size, pos, c);
INDIRECT_HEAPS.downHeap(refArray, heap, inv, size, newPos, c);
}
/** Rebuilds this queue in a bottom-up fashion (in linear time). */
public void allChanged() {
INDIRECT_HEAPS.makeHeap(refArray, heap, inv, size, c);
}
@Override
public boolean remove(final int index) {
final int result = inv[index];
if (result < 0) return false;
inv[index] = -1;
if (result < --size) {
inv[heap[result] = heap[size]] = result;
final int newPos = INDIRECT_HEAPS.upHeap(refArray, heap, inv, size, result, c);
INDIRECT_HEAPS.downHeap(refArray, heap, inv, size, newPos, c);
}
return true;
}
@Override
public void clear() {
size = 0;
Arrays.fill(inv, -1);
}
#ifdef TEST
/** The original class, now just used for testing. */
private static class TestQueue {
/** The reference array */
private KEY_TYPE refArray[];
/** Its length */
private int N;
/** The number of elements in the heaps */
private int n;
/** The two comparators */
private KEY_COMPARATOR primaryComp, secondaryComp;
/** Two indirect heaps are used, called primary
and secondary
. Each of them contains
a permutation of n
among the indices 0, 1, ..., N
-1 in such a way that the corresponding
objects be sorted with respect to the two comparators.
We also need an array inSec[]
so that inSec[k]
is the index of secondary
containing k
.
*/
private int primary[], secondary[], inSec[];
/** Builds a double indirect priority queue.
* @param refArray The reference array.
* @param primaryComp The primary comparator.
* @param secondaryComp The secondary comparator.
*/
public TestQueue(KEY_TYPE refArray[], KEY_COMPARATOR primaryComp, KEY_COMPARATOR secondaryComp) {
this.refArray = refArray;
this.N = refArray.length;
assert this.N != 0;
this.n = 0;
this.primaryComp = primaryComp;
this.secondaryComp = secondaryComp;
this.primary = new int[N];
this.secondary = new int[N];
this.inSec = new int[N];
java.util.Arrays.fill(inSec, -1);
}
/** Adds an index to the queue. Notice that the index should not be already present in the queue.
* @param i The index to be added
*/
public void add(int i) {
if (i < 0 || i >= refArray.length) throw new IndexOutOfBoundsException();
if (inSec[i] >= 0) throw new IllegalArgumentException();
primary[n] = i;
secondary[n] = i; inSec[i] = n;
n++;
swimPrimary(n-1);
swimSecondary(n-1);
}
/** Heapify the primary heap.
* @param i The index of the heap to be heapified.
*/
private void heapifyPrimary(int i) {
int dep = primary[i];
int child;
while ((child = 2*i+1) < n) {
if (child+1 < n && primaryComp.compare(refArray[primary[child+1]], refArray[primary[child]]) < 0) child++;
if (primaryComp.compare(refArray[dep], refArray[primary[child]]) <= 0) break;
primary[i] = primary[child];
i = child;
}
primary[i] = dep;
}
/** Heapify the secondary heap.
* @param i The index of the heap to be heapified.
*/
private void heapifySecondary(int i) {
int dep = secondary[i];
int child;
while ((child = 2*i+1) < n) {
if (child+1 < n && secondaryComp.compare(refArray[secondary[child+1]], refArray[secondary[child]]) < 0) child++;
if (secondaryComp.compare(refArray[dep], refArray[secondary[child]]) <= 0) break;
secondary[i] = secondary[child]; inSec[secondary[i]] = i;
i = child;
}
secondary[i] = dep; inSec[secondary[i]] = i;
}
/** Swim and heapify the primary heap.
* @param i The index to be moved.
*/
private void swimPrimary(int i) {
int dep = primary[i];
int parent;
while (i != 0 && (parent = (i - 1) / 2) >= 0) {
if (primaryComp.compare(refArray[primary[parent]], refArray[dep]) <= 0) break;
primary[i] = primary[parent];
i = parent;
}
primary[i] = dep;
heapifyPrimary(i);
}
/** Swim and heapify the secondary heap.
* @param i The index to be moved.
*/
private void swimSecondary(int i) {
int dep = secondary[i];
int parent;
while (i != 0 && (parent = (i - 1) / 2) >= 0) {
if (secondaryComp.compare(refArray[secondary[parent]], refArray[dep]) <= 0) break;
secondary[i] = secondary[parent]; inSec[secondary[i]] = i;
i = parent;
}
secondary[i] = dep; inSec[secondary[i]] = i;
heapifySecondary(i);
}
/** Returns the minimum element with respect to the primary comparator.
@return the minimum element.
*/
public int top() {
if (n == 0) throw new java.util.NoSuchElementException();
return primary[0];
}
/** Returns the minimum element with respect to the secondary comparator.
@return the minimum element.
*/
public int secTop() {
if (n == 0) throw new java.util.NoSuchElementException();
return secondary[0];
}
/** Removes the minimum element with respect to the primary comparator.
* @return the removed element.
*/
public boolean remove() {
if (n == 0) throw new java.util.NoSuchElementException();
if (inSec[primary[0]] == -1) return false;
int result = primary[0];
int ins = inSec[result];
inSec[result] = -1;
// Copy a leaf
primary[0] = primary[n-1];
if (ins == n-1) {
n--;
heapifyPrimary(0);
return true;
}
secondary[ins] = secondary[n-1];
inSec[secondary[ins]] = ins;
// Heapify
n--;
heapifyPrimary(0);
swimSecondary(ins);
return true;
}
public void clear() {
while(size() != 0) remove();
}
public void remove(int index) {
if (index >= refArray.length) throw new IndexOutOfBoundsException();
if (inSec[index] == -1) return;
int ins = inSec[index];
inSec[index] = -1;
// Copy a leaf
primary[ins] = primary[n-1];
if (ins == n-1) {
n--;
swimPrimary(ins);
return;
}
secondary[ins] = secondary[n-1];
inSec[secondary[ins]] = ins;
// Heapify
n--;
swimPrimary(ins);
swimSecondary(ins);
}
/** Signals that the minimum element with respect to the comparator has changed.
*/
public void change() {
if (n == 0) throw new java.util.NoSuchElementException();
if (inSec[primary[0]] == -1) throw new IllegalArgumentException();
int ins = inSec[primary[0]];
heapifyPrimary(0);
swimSecondary(ins);
}
public void change(int index) {
if (index >= refArray.length) throw new IndexOutOfBoundsException();
if (inSec[index] == -1) throw new IllegalArgumentException();
if (n == 0) throw new java.util.NoSuchElementException();
int ins = inSec[index];
swimPrimary(ins);
swimSecondary(ins);
}
/** Returns the number of elements in the queue.
* @return the size of the queue
*/
public int size() {
return n;
}
public String toString() {
String s = "[";
for (int i = 0; i < n; i++)
s += refArray[primary[i]]+", ";
return s+ "]";
}
}
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random(seed);
private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
return r.NEXT_KEY();
#elif KEY_CLASS_Object
return Integer.toBinaryString(r.nextInt());
#else
return new java.io.Serializable() {};
#endif
}
private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00");
private static java.text.FieldPosition p = new java.text.FieldPosition(0);
private static String format(double d) {
StringBuffer s = new StringBuffer();
return format.format(d, s, p).toString();
}
private static void speedTest(int n, boolean comp) {
System.out.println("There are presently no speed tests for this class.");
}
private static void fatal(String msg) {
System.out.println(msg);
System.exit(1);
}
private static void ensure(boolean cond, String msg) {
if (cond) return;
fatal(msg);
}
private static boolean heapEqual(int[] a, int[] b, int sizea, int sizeb) {
if (sizea != sizeb) return false;
while(sizea-- != 0) if (a[sizea] != b[sizea]) return false;
return true;
}
private static boolean invEqual(int inva[], int[] invb) {
int i = inva.length;
while(i-- != 0) if (inva[i] != invb[i]) return false;
return true;
}
protected static void test(int n) {
long ms;
Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds, mThrowsNoElement, tThrowsNoElement;
int rm = 0, rt = 0;
KEY_TYPE[] refArray = new KEY_TYPE[n];
for(int i = 0; i < n; i++) refArray[i] = genKey();
HEAP_INDIRECT_PRIORITY_QUEUE m = new HEAP_INDIRECT_PRIORITY_QUEUE(refArray, COMPARATORS.NATURAL_COMPARATOR);
TestQueue t = new TestQueue(refArray, COMPARATORS.NATURAL_COMPARATOR, COMPARATORS.NATURAL_COMPARATOR);
/* We add pairs to t. */
for(int i = 0; i < n / 2; i++) {
t.add(i);
m.enqueue(i);
}
ensure(heapEqual(m.heap, t.primary, m.size(), t.size()), "Error (" + seed + "): m and t differ after creation (" + m + ", " + t + ")");
ensure(invEqual(m.inv, t.inSec), "Error (" + seed + "): m and t differ in inversion arrays after creation (" + java.util.Arrays.toString(m.inv) + ", " + java.util.Arrays.toString(t.inSec) + ")");
/* Now we add and remove random data in m and t, checking that the result is the same. */
for(int i=0; i<2*n; i++) {
if (r.nextDouble() < 0.01) {
t.clear();
m.clear();
for(int j = 0; j < n / 2; j++) {
t.add(j);
m.enqueue(j);
}
}
int T = r.nextInt(2 * n);
mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;
try {
m.enqueue(T);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { mThrowsIllegal = e; }
try {
t.add(T);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { tThrowsIllegal = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): enqueue() divergence in IndexOutOfBoundsException for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): enqueue() divergence in IllegalArgumentException for " + T + " (" + mThrowsIllegal + ", " + tThrowsIllegal + ")");
ensure(heapEqual(m.heap, t.primary, m.size(), t.size()), "Error (" + seed + "): m and t differ after enqueue (" + m + ", " + t + ")");
ensure(invEqual(m.inv, t.inSec), "Error (" + seed + "): m and t differ in inversion arrays after enqueue (" + java.util.Arrays.toString(m.inv) + ", " + java.util.Arrays.toString(t.inSec) + ")");
if (m.size() != 0) {
ensure(m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after enqueue (" + m.first() + ", " + t.top() + ")");
}
mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;
try {
rm = m.dequeue();
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { mThrowsIllegal = e; }
catch (java.util.NoSuchElementException e) { mThrowsNoElement = e; }
try {
rt = t.top();
t.remove();
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { tThrowsIllegal = e; }
catch (java.util.NoSuchElementException e) { tThrowsNoElement = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): dequeue() divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): dequeue() divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")");
ensure((mThrowsNoElement == null) == (tThrowsNoElement == null), "Error (" + seed + "): dequeue() divergence in java.util.NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")");
if (mThrowsOutOfBounds == null) ensure(rt == rm , "Error (" + seed + "): divergence in dequeue() between t and m (" + rt + ", " + rm + ")");
ensure(heapEqual(m.heap, t.primary, m.size(), t.size()), "Error (" + seed + "): m and t differ after dequeue (" + m + ", " + t + ")");
ensure(invEqual(m.inv, t.inSec), "Error (" + seed + "): m and t differ in inversion arrays after dequeue (" + java.util.Arrays.toString(m.inv) + ", " + java.util.Arrays.toString(t.inSec) + ")");
if (m.size() != 0) {
ensure(m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after dequeue (" + m.first() + ", " + t.top() + ")");
}
int pos = r.nextInt(n * 2);
try {
m.remove(pos);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { mThrowsIllegal = e; }
catch (java.util.NoSuchElementException e) { mThrowsNoElement = e; }
try {
t.remove(pos);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { tThrowsIllegal = e; }
catch (java.util.NoSuchElementException e) { tThrowsNoElement = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): remove(int) divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): remove(int) divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")");
ensure((mThrowsNoElement == null) == (tThrowsNoElement == null), "Error (" + seed + "): remove(int) divergence in java.util.NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")");
if (mThrowsOutOfBounds == null) ensure(rt == rm , "Error (" + seed + "): divergence in remove(int) between t and m (" + rt + ", " + rm + ")");
ensure(heapEqual(m.heap, t.primary, m.size(), t.size()), "Error (" + seed + "): m and t differ after remove(int) (" + m + ", " + t + ")");
ensure(invEqual(m.inv, t.inSec), "Error (" + seed + "): m and t differ in inversion arrays after remove(int) (" + java.util.Arrays.toString(m.inv) + ", " + java.util.Arrays.toString(t.inSec) + ")");
if (m.size() != 0) {
ensure(m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after remove(int) (" + m.first() + ", " + t.top() + ")");
}
pos = r.nextInt(n * 2);
try {
m.changed(pos);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { mThrowsIllegal = e; }
catch (java.util.NoSuchElementException e) { mThrowsNoElement = e; }
try {
t.change(pos);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { tThrowsIllegal = e; }
catch (java.util.NoSuchElementException e) { tThrowsNoElement = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): change(int) divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): change(int) divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")");
ensure((mThrowsNoElement == null) == (tThrowsNoElement == null), "Error (" + seed + "): change(int) divergence in java.util.NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")");
if (mThrowsOutOfBounds == null) ensure(rt == rm , "Error (" + seed + "): divergence in change(int) between t and m (" + rt + ", " + rm + ")");
ensure(heapEqual(m.heap, t.primary, m.size(), t.size()), "Error (" + seed + "): m and t differ after change(int) (" + m + ", " + t + ")");
ensure(invEqual(m.inv, t.inSec), "Error (" + seed + "): m and t differ in inversion arrays after change(int) (" + java.util.Arrays.toString(m.inv) + ", " + java.util.Arrays.toString(t.inSec) + ")");
if (m.size() != 0) {
ensure(m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after change(int) (" + m.first() + ", " + t.top() + ")");
}
if (m.size() != 0) {
refArray[m.first()] = genKey();
m.changed();
t.change();
ensure(heapEqual(m.heap, t.primary, m.size(), t.size()), "Error (" + seed + "): m and t differ after change (" + m + ", " + t + ")");
ensure(invEqual(m.inv, t.inSec), "Error (" + seed + "): m and t differ in inversion arrays after change (" + java.util.Arrays.toString(m.inv) + ", " + java.util.Arrays.toString(t.inSec) + ")");
if (m.size() != 0) {
ensure(m.first() == t.top(), "Error (" + seed + "): m and t differ in first element after change (" + m.first() + ", " + t.top() + ")");
}
}
}
/* Now we check that m actually holds the same data. */
m.clear();
ensure(m.isEmpty(), "Error (" + seed + "): m is not empty after clear()");
System.out.println("Test OK");
}
public static void main(String args[]) {
int n = Integer.parseInt(args[1]);
if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2]));
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0]));
else if ("test".equals(args[0])) test(n);
} catch(Throwable e) {
e.printStackTrace(System.err);
System.err.println("seed: " + seed);
}
}
#endif
}