drv.HeapPriorityQueue.drv Maven / Gradle / Ivy
/*
* Copyright (C) 2003-2017 Paolo Boldi and Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package PACKAGE;
#if KEY_CLASS_Object
import java.util.Arrays;
import java.util.Comparator;
import it.unimi.dsi.fastutil.AbstractPriorityQueue;
#else
import java.util.Iterator;
#endif
import java.util.Collection;
import java.util.NoSuchElementException;
/** A type-specific heap-based priority queue.
*
* Instances of this class represent a priority queue using a heap. The heap is enlarged as needed, but
* it is never shrunk. Use the {@link #trim()} method to reduce its size, if necessary.
*/
public class HEAP_PRIORITY_QUEUE KEY_GENERIC extends ABSTRACT_PRIORITY_QUEUE KEY_GENERIC implements java.io.Serializable {
private static final long serialVersionUID = 1L;
/** The heap array. */
SUPPRESS_WARNINGS_KEY_UNCHECKED
protected transient KEY_GENERIC_TYPE[] heap = KEY_GENERIC_ARRAY_CAST ARRAYS.EMPTY_ARRAY;
/** The number of elements in this queue. */
protected int size;
/** The type-specific comparator used in this queue. */
protected KEY_COMPARATOR KEY_SUPER_GENERIC c;
/** Creates a new empty queue with a given capacity and comparator.
*
* @param capacity the initial capacity of this queue.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public HEAP_PRIORITY_QUEUE(int capacity, KEY_COMPARATOR KEY_SUPER_GENERIC c) {
if (capacity > 0) this.heap = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[capacity];
this.c = c;
}
/** Creates a new empty queue with a given capacity and using the natural order.
*
* @param capacity the initial capacity of this queue.
*/
public HEAP_PRIORITY_QUEUE(int capacity) {
this(capacity, null);
}
/** Creates a new empty queue with a given comparator.
*
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
public HEAP_PRIORITY_QUEUE(KEY_COMPARATOR KEY_SUPER_GENERIC c) {
this(0, c);
}
/** Creates a new empty queue using the natural order.
*/
public HEAP_PRIORITY_QUEUE() {
this(0, null);
}
/** Wraps a given array in a queue using a given comparator.
*
*
The queue returned by this method will be backed by the given array.
* The first size
element of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param a an array.
* @param size the number of elements to be included in the queue.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
public HEAP_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] a, int size, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
this(c);
this.heap = a;
this.size = size;
HEAPS.makeHeap(a, size, c);
}
/** Wraps a given array in a queue using a given comparator.
*
*
The queue returned by this method will be backed by the given array.
* The elements of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param a an array.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
public HEAP_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] a, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
this(a, a.length, c);
}
/** Wraps a given array in a queue using the natural order.
*
*
The queue returned by this method will be backed by the given array.
* The first size
element of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param a an array.
* @param size the number of elements to be included in the queue.
*/
public HEAP_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] a, int size) {
this(a, size, null);
}
/** Wraps a given array in a queue using the natural order.
*
*
The queue returned by this method will be backed by the given array.
* The elements of the array will be rearranged so to form a heap (this is
* more efficient than enqueing the elements of a
one by one).
*
* @param a an array.
*/
public HEAP_PRIORITY_QUEUE(final KEY_GENERIC_TYPE[] a) {
this(a, a.length);
}
#if KEYS_PRIMITIVE
/** Creates a queue using the elements in a type-specific collection using a given comparator.
*
*
This constructor is more efficient than enqueing the elements of collection
one by one.
*
* @param collection a collection; its elements will be used to initialize the queue.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
public HEAP_PRIORITY_QUEUE(final COLLECTION KEY_EXTENDS_GENERIC collection, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
this(collection.TO_KEY_ARRAY(), c);
}
/** Creates a queue using the elements in a type-specific collection using the natural order.
*
*
This constructor is
* more efficient than enqueing the elements of collection
one by one.
*
* @param collection a collection; its elements will be used to initialize the queue.
*/
public HEAP_PRIORITY_QUEUE(final COLLECTION KEY_EXTENDS_GENERIC collection) {
this(collection, null);
}
/** Creates a queue using the elements in a collection using a given comparator.
*
*
This constructor is more efficient than enqueing the elements of collection
one by one.
*
* @param collection a collection; its elements will be used to initialize the queue.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
public HEAP_PRIORITY_QUEUE(final Collection extends KEY_GENERIC_CLASS> collection, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
this(collection.size(), c);
final Iterator extends KEY_GENERIC_CLASS> iterator = collection.iterator();
final int size = collection.size();
for(int i = 0 ; i < size; i++) heap[i] = KEY_OBJ2TYPE(iterator.next());
}
/** Creates a queue using the elements in a collection using the natural order.
*
*
This constructor is
* more efficient than enqueing the elements of collection
one by one.
*
* @param collection a collection; its elements will be used to initialize the queue.
*/
public HEAP_PRIORITY_QUEUE(final Collection extends KEY_GENERIC_CLASS> collection) {
this(collection, null);
}
#else
/** Creates a queue using the elements in a collection using a given comparator.
*
*
This constructor is more efficient than enqueing the elements of collection
one by one.
*
* @param collection a collection; its elements will be used to initialize the queue.
* @param c the comparator used in this queue, or {@code null} for the natural order.
*/
SUPPRESS_WARNINGS_KEY_UNCHECKED
public HEAP_PRIORITY_QUEUE(final Collection extends KEY_GENERIC_CLASS> collection, final KEY_COMPARATOR KEY_SUPER_GENERIC c) {
this(KEY_GENERIC_ARRAY_CAST collection.toArray(), c);
}
/** Creates a queue using the elements in a collection using the natural order.
*
*
This constructor is
* more efficient than enqueing the elements of collection
one by one.
*
* @param collection a collection; its elements will be used to initialize the queue.
*/
public HEAP_PRIORITY_QUEUE(final Collection extends KEY_GENERIC_CLASS> collection) {
this(collection, null);
}
#endif
@Override
public void enqueue(KEY_GENERIC_TYPE x) {
if (size == heap.length) heap = ARRAYS.grow(heap, size + 1);
heap[size++] = x;
HEAPS.upHeap(heap, size, size - 1, c);
}
@Override
public KEY_GENERIC_TYPE DEQUEUE() {
if (size == 0) throw new NoSuchElementException();
final KEY_GENERIC_TYPE result = heap[0];
heap[0] = heap[--size];
#if KEY_CLASS_Object
heap[size] = null;
#endif
if (size != 0) HEAPS.downHeap(heap, size, 0, c);
return result;
}
@Override
public KEY_GENERIC_TYPE FIRST() {
if (size == 0) throw new NoSuchElementException();
return heap[0];
}
@Override
public void changed() {
HEAPS.downHeap(heap, size, 0, c);
}
@Override
public int size() { return size; }
@Override
public void clear() {
#if KEY_CLASS_Object
Arrays.fill(heap, 0, size, null);
#endif
size = 0;
}
/** Trims the underlying heap array so that it has exactly {@link #size()} elements. */
public void trim() {
heap = ARRAYS.trim(heap, size);
}
@Override
public KEY_COMPARATOR KEY_SUPER_GENERIC comparator() { return c; }
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
s.defaultWriteObject();
s.writeInt(heap.length);
for(int i = 0; i < size; i++) s.WRITE_KEY(heap[i]);
}
SUPPRESS_WARNINGS_KEY_UNCHECKED
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
heap = KEY_GENERIC_ARRAY_CAST new KEY_TYPE[s.readInt()];
for(int i = 0; i < size; i++) heap[i] = KEY_GENERIC_CAST s.READ_KEY();
}
#ifdef TEST
private static long seed = System.currentTimeMillis();
private static java.util.Random r = new java.util.Random(seed);
private static KEY_TYPE genKey() {
#if KEY_CLASS_Byte || KEY_CLASS_Short || KEY_CLASS_Character
return (KEY_TYPE)(r.nextInt());
#elif KEYS_PRIMITIVE
return r.NEXT_KEY();
#elif KEY_CLASS_Object
return Integer.toBinaryString(r.nextInt());
#else
return new java.io.Serializable() {};
#endif
}
private static java.text.NumberFormat format = new java.text.DecimalFormat("#,###.00");
private static java.text.FieldPosition p = new java.text.FieldPosition(0);
private static String format(double d) {
StringBuffer s = new StringBuffer();
return format.format(d, s, p).toString();
}
private static void speedTest(int n, boolean comp) {
System.out.println("There are presently no speed tests for this class.");
}
private static void fatal(String msg) {
System.out.println(msg);
System.exit(1);
}
private static void ensure(boolean cond, String msg) {
if (cond) return;
fatal(msg);
}
private static boolean heapEqual(KEY_TYPE[] a, KEY_TYPE[] b, int sizea, int sizeb) {
if (sizea != sizeb) return false;
KEY_TYPE[] aa = (KEY_TYPE[])a.clone();
KEY_TYPE[] bb = (KEY_TYPE[])b.clone();
java.util.Arrays.sort(aa, 0, sizea);
java.util.Arrays.sort(bb, 0, sizeb);
while(sizea-- != 0) if (! KEY_EQUALS(aa[sizea], bb[sizea])) return false;
return true;
}
private static KEY_TYPE k[];
protected static void test(int n) {
long ms;
Exception mThrowsIllegal, tThrowsIllegal, mThrowsOutOfBounds, tThrowsOutOfBounds, mThrowsNoElement, tThrowsNoElement;
KEY_TYPE rm = KEY_NULL, rt = KEY_NULL;
k = new KEY_TYPE[n];
for(int i = 0; i < n; i++) k[i] = genKey();
HEAP_PRIORITY_QUEUE m = new HEAP_PRIORITY_QUEUE(COMPARATORS.NATURAL_COMPARATOR);
ARRAY_PRIORITY_QUEUE t = new ARRAY_PRIORITY_QUEUE(COMPARATORS.NATURAL_COMPARATOR);
/* We add pairs to t. */
for(int i = 0; i < n / 2; i++) {
t.enqueue(k[i]);
m.enqueue(k[i]);
}
ensure(heapEqual(m.heap, t.array, m.size(), t.size()), "Error (" + seed + "): m and t differ after creation (" + m + ", " + t + ")");
if (m.size() != 0) {
ensure(KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after creation (" + m.FIRST() + ", " + t.FIRST() + ")");
}
/* Now we add and remove random data in m and t, checking that the result is the same. */
for(int i=0; i<2*n; i++) {
if (r.nextDouble() < 0.01) {
t.clear();
m.clear();
for(int j = 0; j < n / 2; j++) {
t.enqueue(k[j]);
m.enqueue(k[j]);
}
}
KEY_TYPE T = genKey();
mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;
try {
m.enqueue(T);
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { mThrowsIllegal = e; }
try {
t.enqueue(T);
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { tThrowsIllegal = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): enqueue() divergence in IndexOutOfBoundsException for " + T + " (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): enqueue() divergence in IllegalArgumentException for " + T + " (" + mThrowsIllegal + ", " + tThrowsIllegal + ")");
ensure(heapEqual(m.heap, t.array, m.size(), t.size()), "Error (" + seed + "): m and t differ after enqueue (" + m + ", " + t + ")");
if (m.size() != 0) {
ensure(KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after enqueue (" + m.FIRST() + ", " + t.FIRST() + ")");
}
mThrowsNoElement = tThrowsNoElement = mThrowsOutOfBounds = tThrowsOutOfBounds = mThrowsIllegal = tThrowsIllegal = null;
try {
rm = m.DEQUEUE();
}
catch (IndexOutOfBoundsException e) { mThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { mThrowsIllegal = e; }
catch (NoSuchElementException e) { mThrowsNoElement = e; }
try {
rt = t.DEQUEUE();
}
catch (IndexOutOfBoundsException e) { tThrowsOutOfBounds = e; }
catch (IllegalArgumentException e) { tThrowsIllegal = e; }
catch (NoSuchElementException e) { tThrowsNoElement = e; }
ensure((mThrowsOutOfBounds == null) == (tThrowsOutOfBounds == null), "Error (" + seed + "): dequeue() divergence in IndexOutOfBoundsException (" + mThrowsOutOfBounds + ", " + tThrowsOutOfBounds + ")");
ensure((mThrowsIllegal == null) == (tThrowsIllegal == null), "Error (" + seed + "): dequeue() divergence in IllegalArgumentException (" + mThrowsIllegal + ", " + tThrowsIllegal + ")");
ensure((mThrowsNoElement == null) == (tThrowsNoElement == null), "Error (" + seed + "): dequeue() divergence in NoSuchElementException (" + mThrowsNoElement + ", " + tThrowsNoElement + ")");
if (mThrowsOutOfBounds == null) ensure(KEY_EQUALS(rt, rm) , "Error (" + seed + "): divergence in dequeue() between t and m (" + rt + ", " + rm + ")");
ensure(heapEqual(m.heap, t.array, m.size(), t.size()), "Error (" + seed + "): m and t differ after dequeue (" + m + ", " + t + ")");
if (m.size() != 0) {
ensure(KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after dequeue (" + m.FIRST() + ", " + t.FIRST() + ")");
}
/* Now we save and read m. */
try {
java.io.File ff = new java.io.File("it.unimi.dsi.fastutil.test");
java.io.OutputStream os = new java.io.FileOutputStream(ff);
java.io.ObjectOutputStream oos = new java.io.ObjectOutputStream(os);
oos.writeObject(m);
oos.close();
java.io.InputStream is = new java.io.FileInputStream(ff);
java.io.ObjectInputStream ois = new java.io.ObjectInputStream(is);
m = (HEAP_PRIORITY_QUEUE)ois.readObject();
ois.close();
ff.delete();
}
catch(Exception e) {
e.printStackTrace();
System.exit(1);
}
ensure(heapEqual(m.heap, t.array, m.size(), t.size()), "Error (" + seed + "): m and t differ after save/read");
HEAP_PRIORITY_QUEUE m2 = new HEAP_PRIORITY_QUEUE(t.array, t.size());
ARRAY_PRIORITY_QUEUE t2 = new ARRAY_PRIORITY_QUEUE(m.heap, m.size());
m = m2;
t = t2;
ensure(heapEqual(m.heap, t.array, m.size(), t.size()), "Error (" + seed + "): m and t differ after wrap (" + m + ", " + t + ")");
if (m.size() != 0) {
ensure(KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after wrap (" + m.FIRST() + ", " + t.FIRST() + ")");
}
if (m.size() != 0 && ((new OPEN_HASH_SET(m.heap, 0, m.size)).size() == m.size())) {
int j = t.size(), M = --j;
#if KEYS_PRIMITIVE
while(j-- != 0) if (KEY_LESS(t.array[j], t.array[M])) M = j;
#else
while(j-- != 0) if (((Comparable)t.array[j]).compareTo(t.array[M])< 0) M = j;
#endif
m.heap[0] = t.array[M] = genKey();
m.changed();
t.changed();
ensure(heapEqual(m.heap, t.array, m.size(), t.size()), "Error (" + seed + "): m and t differ after change (" + m + ", " + t + ")");
if (m.size() != 0) {
ensure(KEY_EQUALS(m.FIRST(), t.FIRST()), "Error (" + seed + "): m and t differ in first element after change (" + m.FIRST() + ", " + t.FIRST() + ")");
}
}
}
/* Now we check that m actually holds the same data. */
m.clear();
ensure(m.isEmpty(), "Error (" + seed + "): m is not empty after clear()");
System.out.println("Test OK");
}
public static void main(String args[]) {
int n = Integer.parseInt(args[1]);
if (args.length > 2) r = new java.util.Random(seed = Long.parseLong(args[2]));
try {
if ("speedTest".equals(args[0]) || "speedComp".equals(args[0])) speedTest(n, "speedComp".equals(args[0]));
else if ("test".equals(args[0])) test(n);
} catch(Throwable e) {
e.printStackTrace(System.err);
System.err.println("seed: " + seed);
}
}
#endif
}