hivemall.anomaly.SingularSpectrumTransform Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package hivemall.anomaly;
import hivemall.anomaly.SingularSpectrumTransformUDF.Parameters;
import hivemall.anomaly.SingularSpectrumTransformUDF.ScoreFunction;
import hivemall.anomaly.SingularSpectrumTransformUDF.SingularSpectrumTransformInterface;
import hivemall.utils.collections.DoubleRingBuffer;
import hivemall.utils.lang.Preconditions;
import hivemall.utils.math.MatrixUtils;
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
import java.util.TreeMap;
import javax.annotation.Nonnull;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.SingularValueDecomposition;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorUtils;
final class SingularSpectrumTransform implements SingularSpectrumTransformInterface {
@Nonnull
private final PrimitiveObjectInspector oi;
@Nonnull
private final ScoreFunction scoreFunc;
@Nonnull
private final int window;
@Nonnull
private final int nPastWindow;
@Nonnull
private final int nCurrentWindow;
@Nonnull
private final int pastSize;
@Nonnull
private final int currentSize;
@Nonnull
private final int currentOffset;
@Nonnull
private final int r;
@Nonnull
private final int k;
@Nonnull
private final DoubleRingBuffer xRing;
@Nonnull
private final double[] xSeries;
@Nonnull
private final double[] q;
SingularSpectrumTransform(@Nonnull Parameters params, @Nonnull PrimitiveObjectInspector oi) {
this.oi = oi;
this.scoreFunc = params.scoreFunc;
this.window = params.w;
this.nPastWindow = params.n;
this.nCurrentWindow = params.m;
this.pastSize = window + nPastWindow;
this.currentSize = window + nCurrentWindow;
this.currentOffset = params.g;
this.r = params.r;
this.k = params.k;
Preconditions.checkArgument(params.k >= params.r);
// (w + n) past samples for the n-past-windows
// (w + m) current samples for the m-current-windows, starting from offset g
// => need to hold past (w + n + g + w + m) samples from the latest sample
int holdSampleSize = pastSize + currentOffset + currentSize;
this.xRing = new DoubleRingBuffer(holdSampleSize);
this.xSeries = new double[holdSampleSize];
this.q = new double[window];
double norm = 0.d;
for (int i = 0; i < window; i++) {
this.q[i] = Math.random();
norm += q[i] * q[i];
}
norm = Math.sqrt(norm);
// normalize
for (int i = 0; i < window; i++) {
this.q[i] = q[i] / norm;
}
}
@Override
public void update(@Nonnull final Object arg, @Nonnull final double[] outScores)
throws HiveException {
double x = PrimitiveObjectInspectorUtils.getDouble(arg, oi);
xRing.add(x).toArray(xSeries, true /* FIFO */);
// need to wait until the buffer is filled
if (!xRing.isFull()) {
outScores[0] = 0.d;
} else {
// create past trajectory matrix and find its left singular vectors
RealMatrix H = new Array2DRowRealMatrix(window, nPastWindow);
for (int i = 0; i < nPastWindow; i++) {
H.setColumn(i, Arrays.copyOfRange(xSeries, i, i + window));
}
// create current trajectory matrix and find its left singular vectors
RealMatrix G = new Array2DRowRealMatrix(window, nCurrentWindow);
int currentHead = pastSize + currentOffset;
for (int i = 0; i < nCurrentWindow; i++) {
G.setColumn(i,
Arrays.copyOfRange(xSeries, currentHead + i, currentHead + i + window));
}
switch (scoreFunc) {
case svd:
outScores[0] = computeScoreSVD(H, G);
break;
case ika:
outScores[0] = computeScoreIKA(H, G);
break;
default:
throw new IllegalStateException("Unexpected score function: " + scoreFunc);
}
}
}
/**
* Singular Value Decomposition (SVD) based naive scoring.
*/
private double computeScoreSVD(@Nonnull final RealMatrix H, @Nonnull final RealMatrix G) {
SingularValueDecomposition svdH = new SingularValueDecomposition(H);
RealMatrix UT = svdH.getUT();
SingularValueDecomposition svdG = new SingularValueDecomposition(G);
RealMatrix Q = svdG.getU();
// find the largest singular value for the r principal components
RealMatrix UTQ = UT.getSubMatrix(0, r - 1, 0, window - 1)
.multiply(Q.getSubMatrix(0, window - 1, 0, r - 1));
SingularValueDecomposition svdUTQ = new SingularValueDecomposition(UTQ);
double[] s = svdUTQ.getSingularValues();
return 1.d - s[0];
}
/**
* Implicit Krylov Approximation (IKA) based naive scoring.
*
* Number of iterations for the Power method and QR method is fixed to 1 for efficiency. This
* may cause failure (i.e. meaningless scores) depending on datasets and initial values.
*
*/
private double computeScoreIKA(@Nonnull final RealMatrix H, @Nonnull final RealMatrix G) {
// assuming n = m = window, and keep track the left singular vector as `q`
MatrixUtils.power1(G, q, 1, q, new double[window]);
RealMatrix T = new Array2DRowRealMatrix(k, k);
MatrixUtils.lanczosTridiagonalization(H.multiply(H.transpose()), q, T);
double[] eigvals = new double[k];
RealMatrix eigvecs = new Array2DRowRealMatrix(k, k);
MatrixUtils.tridiagonalEigen(T, 1, eigvals, eigvecs);
// tridiagonalEigen() returns unordered eigenvalues,
// so the top-r eigenvectors should be picked carefully
TreeMap map = new TreeMap(Collections.reverseOrder());
for (int i = 0; i < k; i++) {
map.put(eigvals[i], i);
}
Iterator indices = map.values().iterator();
double s = 0.d;
for (int i = 0; i < r; i++) {
if (!indices.hasNext()) {
throw new IllegalStateException("Should not happen");
}
double v = eigvecs.getEntry(0, indices.next().intValue());
s += v * v;
}
return 1.d - Math.sqrt(s);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy