hivemall.classifier.GeneralClassifierUDTF Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package hivemall.classifier;
import hivemall.GeneralLearnerBaseUDTF;
import hivemall.annotations.Since;
import hivemall.model.FeatureValue;
import hivemall.optimizer.LossFunctions.LossFunction;
import hivemall.optimizer.LossFunctions.LossType;
import javax.annotation.Nonnull;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
/**
* A general classifier class that can select a loss function and an optimization function.
*/
@Description(name = "train_classifier",
value = "_FUNC_(list features, int label [, const string options])"
+ " - Returns a relation consists of ",
extended = "Build a prediction model by a generic classifier")
@Since(version = "0.5-rc.1")
public final class GeneralClassifierUDTF extends GeneralLearnerBaseUDTF {
@Override
protected String getLossOptionDescription() {
return "Loss function [HingeLoss (default), LogLoss, SquaredHingeLoss, ModifiedHuberLoss, or\n"
+ "a regression loss: SquaredLoss, QuantileLoss, EpsilonInsensitiveLoss, "
+ "SquaredEpsilonInsensitiveLoss, HuberLoss]";
}
@Override
protected LossType getDefaultLossType() {
return LossType.HingeLoss;
}
@Override
protected void checkLossFunction(@Nonnull LossFunction lossFunction)
throws UDFArgumentException {
// will accepts both binary loss and regression loss functions
}
@Override
protected void checkTargetValue(final float label) throws UDFArgumentException {
if (label != -1 && label != 0 && label != 1) {
throw new UDFArgumentException("Invalid label value for classification: " + label);
}
}
@Override
protected void train(@Nonnull final FeatureValue[] features, final float label) {
float predicted = predict(features);
float y = label > 0.f ? 1.f : -1.f;
update(features, y, predicted);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy