hivemall.classifier.PassiveAggressiveUDTF Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package hivemall.classifier;
import hivemall.model.FeatureValue;
import hivemall.model.PredictionResult;
import hivemall.optimizer.LossFunctions;
import javax.annotation.Nonnull;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.Options;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
@Description(name = "train_pa",
value = "_FUNC_(list features, int label [, const string options])"
+ " - Returns a relation consists of ",
extended = "Build a prediction model by Passive-Aggressive (PA) binary classifier")
public class PassiveAggressiveUDTF extends BinaryOnlineClassifierUDTF {
@Override
public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException {
final int numArgs = argOIs.length;
if (numArgs != 2 && numArgs != 3) {
throw new UDFArgumentException(
"_FUNC_ takes 2 or 3 arguments: List features, int label [, constant string options]");
}
return super.initialize(argOIs);
}
@Override
protected void train(@Nonnull final FeatureValue[] features, final int label) {
final float y = label > 0 ? 1.f : -1.f;
PredictionResult margin = calcScoreAndNorm(features);
float p = margin.getScore();
float loss = LossFunctions.hingeLoss(p, y); // 1.0 - y * p
if (loss > 0.f) { // y * p < 1
float eta = eta(loss, margin);
float coeff = eta * y;
update(features, coeff);
}
}
/** returns learning rate */
protected float eta(float loss, PredictionResult margin) {
return loss / margin.getSquaredNorm();
}
@Description(name = "train_pa1",
value = "_FUNC_(list features, int label [, const string options])"
+ " - Returns a relation consists of ",
extended = "Build a prediction model by Passive-Aggressive 1 (PA-1) binary classifier")
public static class PA1 extends PassiveAggressiveUDTF {
/** Aggressiveness parameter */
protected float c;
@Override
protected Options getOptions() {
Options opts = super.getOptions();
opts.addOption("c", "aggressiveness", true, "Aggressiveness parameter C [default 1.0]");
return opts;
}
@Override
protected CommandLine processOptions(ObjectInspector[] argOIs) throws UDFArgumentException {
final CommandLine cl = super.processOptions(argOIs);
float c = 1.f;
if (cl != null) {
String c_str = cl.getOptionValue("c");
if (c_str != null) {
c = Float.parseFloat(c_str);
if (!(c > 0.f)) {
throw new UDFArgumentException(
"Aggressiveness parameter C must be C > 0: " + c);
}
}
}
this.c = c;
return cl;
}
@Override
protected float eta(float loss, PredictionResult margin) {
float squared_norm = margin.getSquaredNorm();
float eta = loss / squared_norm;
return Math.min(c, eta);
}
}
@Description(name = "train_pa2",
value = "_FUNC_(list features, int label [, const string options])"
+ " - Returns a relation consists of ",
extended = "Build a prediction model by Passive-Aggressive 2 (PA-2) binary classifier")
public static class PA2 extends PA1 {
@Override
protected float eta(float loss, PredictionResult margin) {
float squared_norm = margin.getSquaredNorm();
float eta = loss / (squared_norm + (0.5f / c));
return eta;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy