All Downloads are FREE. Search and download functionalities are using the official Maven repository.

hivemall.classifier.SoftConfideceWeightedUDTF Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package hivemall.classifier;

import hivemall.model.FeatureValue;
import hivemall.model.IWeightValue;
import hivemall.model.PredictionResult;
import hivemall.model.WeightValue.WeightValueWithCovar;
import hivemall.utils.math.StatsUtils;

import javax.annotation.Nonnull;

import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.Options;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;

/**
 * Soft Confidence-Weighted binary classifier.
 * 
 * 
 * [1] Steven C. H. Hoi, Jialei Wang, Peilin Zhao: Exact Soft Confidence-Weighted Learning. ICML 2012
 * 
* * @link http://icml.cc/2012/papers/86.pdf */ public abstract class SoftConfideceWeightedUDTF extends BinaryOnlineClassifierUDTF { /** Confidence parameter phi */ protected float phi; /** Aggressiveness parameter */ protected float c; @Override public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException { final int numArgs = argOIs.length; if (numArgs != 2 && numArgs != 3) { throw new UDFArgumentException( "SoftConfideceWeightedUDTF takes 2 or 3 arguments: List features, Int label [, constant String options]"); } return super.initialize(argOIs); } @Override protected boolean useCovariance() { return true; } @Override protected Options getOptions() { Options opts = super.getOptions(); opts.addOption("phi", "confidence", true, "Confidence parameter [default 1.0]"); opts.addOption("eta", "hyper_c", true, "Confidence hyperparameter eta in range (0.5, 1] [default 0.85]"); opts.addOption("c", "aggressiveness", true, "Aggressiveness parameter C [default 1.0]"); return opts; } @Override protected CommandLine processOptions(ObjectInspector[] argOIs) throws UDFArgumentException { final CommandLine cl = super.processOptions(argOIs); float phi = 1.f; float c = 1.f; if (cl != null) { String phi_str = cl.getOptionValue("phi"); if (phi_str == null) { String eta_str = cl.getOptionValue("eta"); if (eta_str != null) { double eta = Double.parseDouble(eta_str); if (eta <= 0.5 || eta > 1) { throw new UDFArgumentException( "Confidence hyperparameter eta must be in range (0.5, 1]: " + eta_str); } phi = (float) StatsUtils.probit(eta, 5d); } } else { phi = Float.parseFloat(phi_str); } String c_str = cl.getOptionValue("c"); if (c_str != null) { c = Float.parseFloat(c_str); if (!(c > 0.f)) { throw new UDFArgumentException( "Aggressiveness parameter C must be C > 0: " + c); } } } this.phi = phi; this.c = c; return cl; } @Override protected void train(@Nonnull final FeatureValue[] features, int label) { final float y = label > 0 ? 1.f : -1.f; PredictionResult margin = calcScoreAndVariance(features); float loss = loss(margin, y); if (loss > 0.f) { float alpha = getAlpha(margin); if (alpha == 0.f) { return; } float beta = getBeta(margin, alpha); if (beta == 0.f) { return; } update(features, y, alpha, beta); } } protected float loss(PredictionResult margin, float y) { float var = margin.getVariance(); float mean = margin.getScore(); float loss = phi * (float) Math.sqrt(var) - (y * mean); return Math.max(loss, 0.f); } protected abstract float getAlpha(PredictionResult margin); protected abstract float getBeta(PredictionResult margin, float alpha); @Description(name = "train_scw", value = "_FUNC_(list features, int label [, const string options])" + " - Returns a relation consists of ", extended = "Build a prediction model by Soft Confidence-Weighted (SCW-1) binary classifier") public static class SCW1 extends SoftConfideceWeightedUDTF { private float squared_phi, psi, zeta; @Override public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException { StructObjectInspector oi = super.initialize(argOIs); float phiphi = phi * phi; this.squared_phi = phiphi; this.psi = 1.f + phiphi / 2.f; this.zeta = 1.f + phiphi; return oi; } @Override protected float getAlpha(PredictionResult margin) { float m = margin.getScore(); float var = margin.getVariance(); float alpha_numer = -m * psi + (float) Math.sqrt( (m * m * squared_phi * squared_phi / 4.f) + (var * squared_phi * zeta)); float alpha_denom = var * zeta; if (alpha_denom == 0.f) { return 0.f; } float alpha = alpha_numer / alpha_denom; if (alpha <= 0.f) { return 0.f; } return Math.max(c, alpha); } @Override protected float getBeta(PredictionResult margin, float alpha) { if (alpha == 0.f) { return 0.f; } float var = margin.getVariance(); float beta_numer = alpha * phi; float var_alpha_phi = var * beta_numer; float u = -var_alpha_phi + (float) Math.sqrt(var_alpha_phi * var_alpha_phi + 4.f * var); float beta_den = u / 2.f + var_alpha_phi; if (beta_den == 0.f) { return 0.f; } float beta = beta_numer / beta_den; return beta; } } @Description(name = "train_scw2", value = "_FUNC_(list features, int label [, const string options])" + " - Returns a relation consists of ", extended = "Build a prediction model by Soft Confidence-Weighted 2 (SCW-2) binary classifier") public static final class SCW2 extends SCW1 { @Override protected float getAlpha(PredictionResult margin) { float m = margin.getScore(); float var = margin.getVariance(); float squared_phi = phi * phi; float n = var + c / 2.f; float v_phi_phi = var * squared_phi; float v_phi_phi_m = v_phi_phi * m; float term = v_phi_phi_m * m * var + 4.f * n * var * (n + v_phi_phi); float gamma = phi * (float) Math.sqrt(term); float alpha_numer = -(2.f * m * n + v_phi_phi_m) + gamma; if (alpha_numer <= 0.f) { return 0.f; } float alpha_denom = 2.f * (n * n + n * v_phi_phi); if (alpha_denom == 0.f) { return 0.f; } float alpha = alpha_numer / alpha_denom; return Math.max(0.f, alpha); } } protected void update(@Nonnull final FeatureValue[] features, final float y, final float alpha, final float beta) { for (FeatureValue f : features) { if (f == null) { continue; } final Object k = f.getFeature(); final float v = f.getValueAsFloat(); IWeightValue old_w = model.get(k); IWeightValue new_w = getNewWeight(old_w, v, y, alpha, beta); model.set(k, new_w); } } private static IWeightValue getNewWeight(final IWeightValue old, final float x, final float y, final float alpha, final float beta) { final float old_v; final float old_cov; if (old == null) { old_v = 0.f; old_cov = 1.f; } else { old_v = old.get(); old_cov = old.getCovariance(); } float cv = old_cov * x; float new_w = old_v + (y * alpha * cv); float new_cov = old_cov - (beta * cv * cv); return new WeightValueWithCovar(new_w, new_cov); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy