All Downloads are FREE. Search and download functionalities are using the official Maven repository.

hivemall.classifier.multiclass.MulticlassAROWClassifierUDTF Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package hivemall.classifier.multiclass;

import hivemall.model.FeatureValue;
import hivemall.model.IWeightValue;
import hivemall.model.Margin;
import hivemall.model.PredictionModel;
import hivemall.model.WeightValue.WeightValueWithCovar;

import javax.annotation.Nonnull;

import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.Options;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;

/**
 * Multi-class Adaptive Regularization of Weight Vectors (AROW) classifier.
 * 
 * 
 * [1] K. Crammer, A. Kulesza, and M. Dredze, "Adaptive Regularization of Weight Vectors",
 *     In Proc. NIPS, 2009.
 * 
*/ @Description(name = "train_multiclass_arow", value = "_FUNC_(list features, {int|string} label [, const string options])" + " - Returns a relation consists of <{int|string} label, {string|int|bigint} feature, float weight, float covar>", extended = "Build a prediction model by Adaptive Regularization of Weight Vectors (AROW) multiclass classifier") public class MulticlassAROWClassifierUDTF extends MulticlassOnlineClassifierUDTF { /** Regularization parameter r */ protected float r; @Override public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException { final int numArgs = argOIs.length; if (numArgs != 2 && numArgs != 3) { throw new UDFArgumentException( "_FUNC_ takes 2 or 3 arguments: List features, {Int|String} label [, constant String options]"); } return super.initialize(argOIs); } @Override protected boolean useCovariance() { return true; } @Override protected Options getOptions() { Options opts = super.getOptions(); opts.addOption("r", "regularization", true, "Regularization parameter for some r > 0 [default 0.1]"); return opts; } @Override protected CommandLine processOptions(ObjectInspector[] argOIs) throws UDFArgumentException { final CommandLine cl = super.processOptions(argOIs); float r = 0.1f; if (cl != null) { String r_str = cl.getOptionValue("r"); if (r_str != null) { r = Float.parseFloat(r_str); if (!(r > 0)) { throw new UDFArgumentException( "Regularization parameter must be greater than 0: " + r_str); } } } this.r = r; return cl; } @Override protected void train(@Nonnull final FeatureValue[] features, @Nonnull Object actual_label) { Margin margin = getMarginAndVariance(features, actual_label); float m = margin.get(); if (m >= 1.f) { return; } float var = margin.getVariance(); float beta = 1.f / (var + r); float alpha = (1.f - m) * beta; Object missed_label = margin.getMaxIncorrectLabel(); update(features, actual_label, missed_label, alpha, beta); } protected void update(@Nonnull final FeatureValue[] features, final Object actual_label, final Object missed_label, final float alpha, final float beta) { assert (actual_label != null); if (actual_label.equals(missed_label)) { throw new IllegalArgumentException( "Actual label equals to missed label: " + actual_label); } PredictionModel model2add = label2model.get(actual_label); if (model2add == null) { model2add = createModel(); label2model.put(actual_label, model2add); } PredictionModel model2sub = null; if (missed_label != null) { model2sub = label2model.get(missed_label); if (model2sub == null) { model2sub = createModel(); label2model.put(missed_label, model2sub); } } for (FeatureValue f : features) {// w[f] += y * x[f] if (f == null) { continue; } final Object k = f.getFeature(); final float v = f.getValueAsFloat(); IWeightValue old_correctclass_w = model2add.get(k); IWeightValue new_correctclass_w = getNewWeight(old_correctclass_w, v, alpha, beta, true); model2add.set(k, new_correctclass_w); if (model2sub != null) { IWeightValue old_wrongclass_w = model2sub.get(k); IWeightValue new_wrongclass_w = getNewWeight(old_wrongclass_w, v, alpha, beta, false); model2sub.set(k, new_wrongclass_w); } } } private static IWeightValue getNewWeight(final IWeightValue old, final float v, final float alpha, final float beta, final boolean positive) { final float old_v; final float old_cov; if (old == null) { old_v = 0.f; old_cov = 1.f; } else { old_v = old.get(); old_cov = old.getCovariance(); } float cv = old_cov * v; float new_w = positive ? old_v + (alpha * cv) : old_v - (alpha * cv); float new_cov = old_cov - (beta * cv * cv); return new WeightValueWithCovar(new_w, new_cov); } @Description(name = "train_multiclass_arowh", value = "_FUNC_(list features, int|string label [, const string options])" + " - Returns a relation consists of ", extended = "Build a prediction model by Adaptive Regularization of Weight Vectors (AROW) multiclass classifier using hinge loss") public static final class AROWh extends MulticlassAROWClassifierUDTF { /** Aggressiveness parameter */ protected float c; @Override protected Options getOptions() { Options opts = super.getOptions(); opts.addOption("c", "aggressiveness", true, "Aggressiveness parameter C [default 1.0]"); return opts; } @Override protected CommandLine processOptions(ObjectInspector[] argOIs) throws UDFArgumentException { final CommandLine cl = super.processOptions(argOIs); float c = 1.f; if (cl != null) { String c_str = cl.getOptionValue("c"); if (c_str != null) { c = Float.parseFloat(c_str); if (!(c > 0.f)) { throw new UDFArgumentException( "Aggressiveness parameter C must be C > 0: " + c); } } } this.c = c; return cl; } @Override protected void train(@Nonnull final FeatureValue[] features, @Nonnull Object actual_label) { Margin margin = getMarginAndVariance(features, actual_label); float loss = loss(margin); if (loss > 0.f) { float var = margin.getVariance(); float beta = 1.f / (var + r); float alpha = loss * beta; Object missed_label = margin.getMaxIncorrectLabel(); update(features, actual_label, missed_label, alpha, beta); } } /** * @return C - m */ protected float loss(Margin margin) { return c - margin.get(); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy