All Downloads are FREE. Search and download functionalities are using the official Maven repository.

hivemall.classifier.multiclass.MulticlassConfidenceWeightedUDTF Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package hivemall.classifier.multiclass;

import hivemall.model.FeatureValue;
import hivemall.model.IWeightValue;
import hivemall.model.Margin;
import hivemall.model.PredictionModel;
import hivemall.model.WeightValue.WeightValueWithCovar;
import hivemall.utils.math.StatsUtils;

import javax.annotation.Nonnull;

import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.Options;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;

/**
 * A multi-class confidence-weighted linear classification.
 * 
 * 
 * [1] Mark Dredze, Koby Crammer and Fernando Pereira. "Confidence-weighted linear classification",
 *     In Proc. ICML, pp.264-271, 2008.
 * [2] Koby Crammer, Mark Dredze and Alex Kulesza. "Multi-class confidence weighted algorithms",
 *     In Proc. EMNLP, Vol. 2, pp.496-504, 2008.
 * 
* * @link http://dl.acm.org/citation.cfm?id=1390190 * @link http://dl.acm.org/citation.cfm?id=1699577 */ @Description(name = "train_multiclass_cw", value = "_FUNC_(list features, {int|string} label [, const string options])" + " - Returns a relation consists of <{int|string} label, {string|int|bigint} feature, float weight, float covar>", extended = "Build a prediction model by Confidence-Weighted (CW) multiclass classifier") public class MulticlassConfidenceWeightedUDTF extends MulticlassOnlineClassifierUDTF { /** confidence parameter phi */ protected float phi; @Override public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException { final int numArgs = argOIs.length; if (numArgs != 2 && numArgs != 3) { throw new UDFArgumentException( "_FUNC_ takes 2 or 3 arguments: List features, {Int|String} label [, constant String options]"); } return super.initialize(argOIs); } @Override protected boolean useCovariance() { return true; } @Override protected Options getOptions() { Options opts = super.getOptions(); opts.addOption("phi", "confidence", true, "Confidence parameter [default 1.0]"); opts.addOption("eta", "hyper_c", true, "Confidence hyperparameter eta in range (0.5, 1] [default 0.85]"); return opts; } @Override protected CommandLine processOptions(ObjectInspector[] argOIs) throws UDFArgumentException { final CommandLine cl = super.processOptions(argOIs); float phi = 1.f; if (cl != null) { String phi_str = cl.getOptionValue("phi"); if (phi_str == null) { String eta_str = cl.getOptionValue("eta"); if (eta_str != null) { double eta = Double.parseDouble(eta_str); if (eta <= 0.5 || eta > 1) { throw new UDFArgumentException( "Confidence hyperparameter eta must be in range (0.5, 1]: " + eta_str); } phi = (float) StatsUtils.probit(eta, 5d); } } else { phi = Float.parseFloat(phi_str); } } this.phi = phi; return cl; } @Override protected void train(@Nonnull final FeatureValue[] features, @Nonnull Object actual_label) { Margin margin = getMarginAndVariance(features, actual_label, true); float gamma = getGamma(margin); if (gamma > 0.f) {// alpha = max(0, gamma) Object missed_label = margin.getMaxIncorrectLabel(); update(features, gamma, actual_label, missed_label); } } protected final float getGamma(Margin margin) { float m = margin.get(); float var = margin.getVariance(); assert (var != 0); float b = 1.f + 2.f * phi * m; float gamma_numer = -b + (float) Math.sqrt(b * b - 8.f * phi * (m - phi * var)); float gamma_denom = 4.f * phi * var; if (gamma_denom == 0.f) {// avoid divide-by-zero return 0.f; } return gamma_numer / gamma_denom; } protected void update(@Nonnull final FeatureValue[] features, float alpha, Object actual_label, Object missed_label) { assert (actual_label != null); if (actual_label.equals(missed_label)) { throw new IllegalArgumentException( "Actual label equals to missed label: " + actual_label); } PredictionModel model2add = label2model.get(actual_label); if (model2add == null) { model2add = createModel(); label2model.put(actual_label, model2add); } PredictionModel model2sub = null; if (missed_label != null) { model2sub = label2model.get(missed_label); if (model2sub == null) { model2sub = createModel(); label2model.put(missed_label, model2sub); } } for (FeatureValue f : features) {// w[f] += y * x[f] if (f == null) { continue; } final Object k = f.getFeature(); final float v = f.getValueAsFloat(); IWeightValue old_correctclass_w = model2add.get(k); IWeightValue new_correctclass_w = getNewWeight(old_correctclass_w, v, alpha, phi, true); model2add.set(k, new_correctclass_w); if (model2sub != null) { IWeightValue old_wrongclass_w = model2sub.get(k); IWeightValue new_wrongclass_w = getNewWeight(old_wrongclass_w, v, alpha, phi, false); model2sub.set(k, new_wrongclass_w); } } } private static IWeightValue getNewWeight(final IWeightValue old, final float x, final float alpha, final float phi, final boolean positive) { final float old_w, old_cov; if (old == null) { old_w = 0.f; old_cov = 1.f; } else { old_w = old.get(); old_cov = old.getCovariance(); } float delta_w = alpha * old_cov * x; float new_w = positive ? old_w + delta_w : old_w - delta_w; float new_cov = 1.f / (1.f / old_cov + (2.f * alpha * phi * x * x)); return new WeightValueWithCovar(new_w, new_cov); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy