hivemall.classifier.multiclass.MulticlassPerceptronUDTF Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package hivemall.classifier.multiclass;
import hivemall.model.FeatureValue;
import hivemall.model.PredictionResult;
import javax.annotation.Nonnull;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
@Description(name = "train_multiclass_perceptron",
value = "_FUNC_(list features, {int|string} label [, const string options])"
+ " - Returns a relation consists of <{int|string} label, {string|int|bigint} feature, float weight>",
extended = "Build a prediction model by Perceptron multiclass classifier")
public final class MulticlassPerceptronUDTF extends MulticlassOnlineClassifierUDTF {
@Override
public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException {
final int numArgs = argOIs.length;
if (numArgs != 2 && numArgs != 3) {
throw new UDFArgumentException(
"MulticlassPerceptronUDTF takes 2 or 3 arguments: List features, {Int|Text} label [, constant text options]");
}
return super.initialize(argOIs);
}
@Override
protected void train(@Nonnull final FeatureValue[] features,
@Nonnull final Object actual_label) {
PredictionResult predicted = classify(features);
Object predicted_label = predicted.getLabel();
if (!actual_label.equals(predicted_label)) {
update(features, 1.f, actual_label, predicted_label);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy