hivemall.hcatalog.mapreduce.FileOutputFormatContainer Maven / Gradle / Ivy
The newest version!
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.hive.hcatalog.mapreduce;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.hive.conf.HiveConf;
import org.apache.hadoop.hive.metastore.MetaStoreUtils;
import org.apache.hadoop.hive.ql.metadata.HiveStorageHandler;
import org.apache.hadoop.hive.metastore.HiveMetaStoreClient;
import org.apache.hadoop.hive.metastore.api.FieldSchema;
import org.apache.hadoop.hive.metastore.api.MetaException;
import org.apache.hadoop.hive.metastore.api.NoSuchObjectException;
import org.apache.hadoop.hive.ql.metadata.Table;
import org.apache.hadoop.hive.serde2.SerDe;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.OutputCommitter;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter;
import org.apache.hadoop.util.ReflectionUtils;
import org.apache.hive.hcatalog.common.ErrorType;
import org.apache.hive.hcatalog.common.HCatConstants;
import org.apache.hive.hcatalog.common.HCatException;
import org.apache.hive.hcatalog.common.HCatUtil;
import org.apache.hive.hcatalog.data.HCatRecord;
import org.apache.thrift.TException;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
/**
* File-based storage (ie RCFile, Text, etc) implementation of OutputFormatContainer.
* This implementation supports the following HCatalog features: partitioning, dynamic partitioning, Hadoop Archiving, etc.
*/
class FileOutputFormatContainer extends OutputFormatContainer {
/**
* @param of base OutputFormat to contain
*/
public FileOutputFormatContainer(org.apache.hadoop.mapred.OutputFormat super WritableComparable>, ? super Writable> of) {
super(of);
}
@Override
public RecordWriter, HCatRecord> getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException {
//this needs to be manually set, under normal circumstances MR Task does this
setWorkOutputPath(context);
//Configure the output key and value classes.
// This is required for writing null as key for file based tables.
context.getConfiguration().set("mapred.output.key.class",
NullWritable.class.getName());
String jobInfoString = context.getConfiguration().get(
HCatConstants.HCAT_KEY_OUTPUT_INFO);
OutputJobInfo jobInfo = (OutputJobInfo) HCatUtil
.deserialize(jobInfoString);
StorerInfo storeInfo = jobInfo.getTableInfo().getStorerInfo();
HiveStorageHandler storageHandler = HCatUtil.getStorageHandler(
context.getConfiguration(), storeInfo);
Class extends SerDe> serde = storageHandler.getSerDeClass();
SerDe sd = (SerDe) ReflectionUtils.newInstance(serde,
context.getConfiguration());
context.getConfiguration().set("mapred.output.value.class",
sd.getSerializedClass().getName());
RecordWriter, HCatRecord> rw;
if (HCatBaseOutputFormat.getJobInfo(context).isDynamicPartitioningUsed()){
// When Dynamic partitioning is used, the RecordWriter instance initialized here isn't used. Can use null.
// (That's because records can't be written until the values of the dynamic partitions are deduced.
// By that time, a new local instance of RecordWriter, with the correct output-path, will be constructed.)
rw = new FileRecordWriterContainer((org.apache.hadoop.mapred.RecordWriter)null,context);
} else {
Path parentDir = new Path(context.getConfiguration().get("mapred.work.output.dir"));
Path childPath = new Path(parentDir,FileOutputFormat.getUniqueName(new JobConf(context.getConfiguration()), "part"));
rw = new FileRecordWriterContainer(
getBaseOutputFormat().getRecordWriter(
parentDir.getFileSystem(context.getConfiguration()),
new JobConf(context.getConfiguration()),
childPath.toString(),
InternalUtil.createReporter(context)),
context);
}
return rw;
}
@Override
public void checkOutputSpecs(JobContext context) throws IOException, InterruptedException {
OutputJobInfo jobInfo = HCatOutputFormat.getJobInfo(context);
HiveMetaStoreClient client = null;
try {
HiveConf hiveConf = HCatUtil.getHiveConf(context.getConfiguration());
client = HCatUtil.getHiveClient(hiveConf);
handleDuplicatePublish(context,
jobInfo,
client,
new Table(jobInfo.getTableInfo().getTable()));
} catch (MetaException e) {
throw new IOException(e);
} catch (TException e) {
throw new IOException(e);
} finally {
HCatUtil.closeHiveClientQuietly(client);
}
if (!jobInfo.isDynamicPartitioningUsed()) {
JobConf jobConf = new JobConf(context.getConfiguration());
getBaseOutputFormat().checkOutputSpecs(null, jobConf);
//checkoutputspecs might've set some properties we need to have context reflect that
HCatUtil.copyConf(jobConf, context.getConfiguration());
}
}
@Override
public OutputCommitter getOutputCommitter(TaskAttemptContext context) throws IOException, InterruptedException {
//this needs to be manually set, under normal circumstances MR Task does this
setWorkOutputPath(context);
return new FileOutputCommitterContainer(context,
HCatBaseOutputFormat.getJobInfo(context).isDynamicPartitioningUsed() ?
null :
new JobConf(context.getConfiguration()).getOutputCommitter());
}
/**
* Handles duplicate publish of partition or data into an unpartitioned table
* if the table is immutable
*
* For partitioned tables, fails if partition already exists.
* For non partitioned tables, fails if files are present in table directory.
* For dynamic partitioned publish, does nothing - check would need to be done at recordwriter time
* @param context the job
* @param outputInfo the output info
* @param client the metastore client
* @param table the table being written to
* @throws IOException
* @throws org.apache.hadoop.hive.metastore.api.MetaException
* @throws org.apache.thrift.TException
*/
private static void handleDuplicatePublish(JobContext context, OutputJobInfo outputInfo,
HiveMetaStoreClient client, Table table)
throws IOException, MetaException, TException, NoSuchObjectException {
/*
* For fully specified ptn, follow strict checks for existence of partitions in metadata
* For unpartitioned tables, follow filechecks
* For partially specified tables:
* This would then need filechecks at the start of a ptn write,
* Doing metadata checks can get potentially very expensive (fat conf) if
* there are a large number of partitions that match the partial specifications
*/
if (!table.isImmutable()){
return;
}
if (table.getPartitionKeys().size() > 0) {
if (!outputInfo.isDynamicPartitioningUsed()) {
List partitionValues = getPartitionValueList(
table, outputInfo.getPartitionValues());
// fully-specified partition
List currentParts = client.listPartitionNames(outputInfo.getDatabaseName(),
outputInfo.getTableName(), partitionValues, (short) 1);
if (currentParts.size() > 0) {
// If a table is partitioned and immutable, then the presence
// of the partition alone is enough to throw an error - we do
// not need to check for emptiness to decide to throw an error
throw new HCatException(ErrorType.ERROR_DUPLICATE_PARTITION);
}
}
} else {
List partitionValues = getPartitionValueList(
table, outputInfo.getPartitionValues());
// non-partitioned table
Path tablePath = new Path(table.getTTable().getSd().getLocation());
FileSystem fs = tablePath.getFileSystem(context.getConfiguration());
if (!MetaStoreUtils.isDirEmpty(fs,tablePath)){
throw new HCatException(ErrorType.ERROR_NON_EMPTY_TABLE,
table.getDbName() + "." + table.getTableName());
}
}
}
/**
* Convert the partition value map to a value list in the partition key order.
* @param table the table being written to
* @param valueMap the partition value map
* @return the partition value list
* @throws java.io.IOException
*/
static List getPartitionValueList(Table table, Map valueMap) throws IOException {
if (valueMap.size() != table.getPartitionKeys().size()) {
throw new HCatException(ErrorType.ERROR_INVALID_PARTITION_VALUES,
"Table "
+ table.getTableName() + " has " +
table.getPartitionKeys().size() + " partition keys, got " +
valueMap.size());
}
List values = new ArrayList();
for (FieldSchema schema : table.getPartitionKeys()) {
String value = valueMap.get(schema.getName().toLowerCase());
if (value == null) {
throw new HCatException(ErrorType.ERROR_MISSING_PARTITION_KEY,
"Key " + schema.getName() + " of table " + table.getTableName());
}
values.add(value);
}
return values;
}
static void setWorkOutputPath(TaskAttemptContext context) throws IOException {
String outputPath = context.getConfiguration().get("mapred.output.dir");
//we need to do this to get the task path and set it for mapred implementation
//since it can't be done automatically because of mapreduce->mapred abstraction
if (outputPath != null)
context.getConfiguration().set("mapred.work.output.dir",
new FileOutputCommitter(new Path(outputPath), context).getWorkPath().toString());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy