hivemall.model.SynchronizedModelWrapper Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package hivemall.model;
import hivemall.utils.collections.IMapIterator;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import javax.annotation.Nonnull;
public final class SynchronizedModelWrapper implements PredictionModel {
private final PredictionModel model;
private final Lock lock;
public SynchronizedModelWrapper(PredictionModel model) {
this.model = model;
this.lock = new ReentrantLock();
}
// ------------------------------------------------------------
// Non-synchronized methods with care
public PredictionModel getModel() {
return model;
}
@Override
public ModelUpdateHandler getUpdateHandler() {
return model.getUpdateHandler();
}
@Override
public void configureMix(ModelUpdateHandler handler, boolean cancelMixRequest) {
model.configureMix(handler, cancelMixRequest);
}
@Override
public long getNumMixed() {
return model.getNumMixed();
}
@Override
public boolean hasCovariance() {
return model.hasCovariance();
}
@Override
public void configureParams(boolean sum_of_squared_gradients, boolean sum_of_squared_delta_x,
boolean sum_of_gradients) {
model.configureParams(sum_of_squared_gradients, sum_of_squared_delta_x, sum_of_gradients);
}
@Override
public void configureClock() {
model.configureClock();
}
@Override
public boolean hasClock() {
return model.hasClock();
}
@Override
public IMapIterator entries() {
return model.entries();
}
// ------------------------------------------------------------
// The below is synchronized methods
@Override
public void resetDeltaUpdates(int feature) {
try {
lock.lock();
model.resetDeltaUpdates(feature);
} finally {
lock.unlock();
}
}
@Override
public int size() {
try {
lock.lock();
return model.size();
} finally {
lock.unlock();
}
}
@Override
public boolean contains(@Nonnull final Object feature) {
try {
lock.lock();
return model.contains(feature);
} finally {
lock.unlock();
}
}
@Override
public T get(@Nonnull final Object feature) {
try {
lock.lock();
return model.get(feature);
} finally {
lock.unlock();
}
}
@Override
public void set(@Nonnull final Object feature,
@Nonnull final T value) {
try {
lock.lock();
model.set(feature, value);
} finally {
lock.unlock();
}
}
@Override
public void delete(@Nonnull final Object feature) {
try {
lock.lock();
model.delete(feature);
} finally {
lock.unlock();
}
}
@Override
public float getWeight(@Nonnull final Object feature) {
try {
lock.lock();
return model.getWeight(feature);
} finally {
lock.unlock();
}
}
@Override
public void setWeight(@Nonnull final Object feature, final float value) {
try {
lock.lock();
model.setWeight(feature, value);
} finally {
lock.unlock();
}
}
@Override
public float getCovariance(@Nonnull final Object feature) {
try {
lock.lock();
return model.getCovariance(feature);
} finally {
lock.unlock();
}
}
@Override
public void set(@Nonnull final Object feature, final float weight, final float covar,
final short clock) {
try {
lock.lock();
model.set(feature, weight, covar, clock);
} finally {
lock.unlock();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy