hivemall.regression.LogressUDTF Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package hivemall.regression;
import hivemall.optimizer.EtaEstimator;
import hivemall.optimizer.LossFunctions;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.Options;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
/**
* Logistic regression using SGD.
*
* @deprecated Use {@link hivemall.regression.GeneralRegressorUDTF} instead
*/
@Deprecated
@Description(name = "logress",
value = "_FUNC_(array features, float target [, constant string options])"
+ " - Returns a relation consists of <{int|bigint|string} feature, float weight>")
public final class LogressUDTF extends RegressionBaseUDTF {
private EtaEstimator etaEstimator;
@Override
public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException {
final int numArgs = argOIs.length;
if (numArgs != 2 && numArgs != 3) {
throw new UDFArgumentException(
"LogressUDTF takes 2 or 3 arguments: List features, float target [, constant string options]");
}
return super.initialize(argOIs);
}
@Override
protected Options getOptions() {
Options opts = super.getOptions();
opts.addOption("t", "total_steps", true, "a total of n_samples * epochs time steps");
opts.addOption("power_t", true, "The exponent for inverse scaling learning rate [default: "
+ EtaEstimator.DEFAULT_POWER_T + "]");
opts.addOption("eta0", true,
"The initial learning rate [default: " + EtaEstimator.DEFAULT_ETA0 + "]");
return opts;
}
@Override
protected CommandLine processOptions(ObjectInspector[] argOIs) throws UDFArgumentException {
CommandLine cl = super.processOptions(argOIs);
this.etaEstimator = EtaEstimator.get(cl);
return cl;
}
@Override
protected void checkTargetValue(final float target) throws UDFArgumentException {
if (target < 0.f || target > 1.f) {
throw new UDFArgumentException("target must be in range 0 to 1: " + target);
}
}
@Override
protected float computeGradient(final float target, final float predicted) {
float eta = etaEstimator.eta(count);
float gradient = LossFunctions.logisticLoss(target, predicted);
return eta * gradient;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy