All Downloads are FREE. Search and download functionalities are using the official Maven repository.

hivemall.regression.PassiveAggressiveRegressionUDTF Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package hivemall.regression;

import hivemall.annotations.Cite;
import hivemall.model.FeatureValue;
import hivemall.model.PredictionResult;
import hivemall.optimizer.LossFunctions;
import hivemall.utils.stats.OnlineVariance;

import javax.annotation.Nonnull;

import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.Options;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;

// @formatter:off
@Description(name = "train_pa1_regr",
        value = "_FUNC_(array features, float target [, constant string options])"
                + " - PA-1 regressor that returns a relation consists of `(int|bigint|string) feature, float weight`.",
        extended = "SELECT \n" + 
                " feature,\n" + 
                " avg(weight) as weight\n" + 
                "FROM \n" + 
                " (SELECT \n" + 
                "     train_pa1_regr(features,label) as (feature,weight)\n" + 
                "  FROM \n" + 
                "     training_data\n" + 
                " ) t \n" + 
                "GROUP BY feature")
// @formatter:on
@Cite(description = "Koby Crammer et.al., Online Passive-Aggressive Algorithms. Journal of Machine Learning Research, 2006.",
        url = "http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf")
public class PassiveAggressiveRegressionUDTF extends RegressionBaseUDTF {

    /** Aggressiveness parameter */
    protected float c;

    /** Sensitivity to prediction mistakes */
    protected float epsilon;

    @Override
    public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException {
        final int numArgs = argOIs.length;
        if (numArgs != 2 && numArgs != 3) {
            throw new UDFArgumentException(
                "_FUNC_ takes arguments: List features, float target [, constant string options]");
        }

        return super.initialize(argOIs);
    }

    @Override
    protected Options getOptions() {
        Options opts = super.getOptions();
        opts.addOption("c", "aggressiveness", true,
            "Aggressiveness parameter [default Float.MAX_VALUE]");
        opts.addOption("e", "epsilon", true, "Sensitivity to prediction mistakes [default 0.1]");
        return opts;
    }

    @Override
    protected CommandLine processOptions(ObjectInspector[] argOIs) throws UDFArgumentException {
        CommandLine cl = super.processOptions(argOIs);

        float c = aggressiveness();
        float epsilon = 0.1f;

        if (cl != null) {
            String opt_c = cl.getOptionValue("c");
            if (opt_c != null) {
                c = Float.parseFloat(opt_c);
                if (!(c > 0.f)) {
                    throw new UDFArgumentException(
                        "Aggressiveness parameter C must be C > 0: " + c);
                }
            }

            String opt_epsilon = cl.getOptionValue("epsilon");
            if (opt_epsilon != null) {
                epsilon = Float.parseFloat(opt_epsilon);
            }
        }

        this.c = c;
        this.epsilon = epsilon;
        return cl;
    }

    protected float aggressiveness() {
        return Float.MAX_VALUE;
    }

    @Override
    protected void train(@Nonnull final FeatureValue[] features, float target) {
        preTrain(target);

        PredictionResult margin = calcScoreAndNorm(features);
        float predicted = margin.getScore();
        float loss = loss(target, predicted);

        if (loss > 0.f) {
            int sign = (target - predicted) > 0.f ? 1 : -1; // sign(y - (W^t)x)
            float eta = eta(loss, margin); // min(C, loss / |x|^2)
            float coeff = sign * eta;
            if (!Float.isInfinite(coeff)) {
                onlineUpdate(features, coeff);
            }
        }
    }

    protected void preTrain(float target) {}

    /**
     * |w^t - y| - epsilon
     */
    protected float loss(float target, float predicted) {
        return LossFunctions.epsilonInsensitiveLoss(predicted, target, epsilon);
    }

    /**
     * min(C, loss / |x|^2)
     */
    protected float eta(float loss, PredictionResult margin) {
        float squared_norm = margin.getSquaredNorm();
        float eta = loss / squared_norm;
        return Math.min(c, eta);
    }

    @Description(name = "train_pa1a_regr",
            value = "_FUNC_(array features, float target [, constant string options])"
                    + " - Returns a relation consists of `(int|bigint|string) feature, float weight`.")
    public static final class PA1a extends PassiveAggressiveRegressionUDTF {

        private OnlineVariance targetStdDev;

        @Override
        public StructObjectInspector initialize(ObjectInspector[] argOIs)
                throws UDFArgumentException {
            this.targetStdDev = new OnlineVariance();
            return super.initialize(argOIs);
        }

        @Override
        protected void preTrain(float target) {
            targetStdDev.handle(target);
        }

        @Override
        protected float loss(float target, float predicted) {
            float stddev = (float) targetStdDev.stddev();
            float e = epsilon * stddev;
            return LossFunctions.epsilonInsensitiveLoss(predicted, target, e);
        }

    }

    @Description(name = "train_pa2_regr",
            value = "_FUNC_(array features, float target [, constant string options])"
                    + " - Returns a relation consists of `(int|bigint|string) feature, float weight`.")
    public static class PA2 extends PassiveAggressiveRegressionUDTF {

        @Override
        protected float aggressiveness() {
            return 1.f;
        }

        @Override
        protected float eta(float loss, PredictionResult margin) {
            float squared_norm = margin.getSquaredNorm();
            float eta = loss / (squared_norm + (0.5f / c));
            return eta;
        }

    }

    @Description(name = "train_pa2a_regr",
            value = "_FUNC_(array features, float target [, constant string options])"
                    + " - Returns a relation consists of `(int|bigint|string) feature, float weight`.")
    public static final class PA2a extends PA2 {

        private OnlineVariance targetStdDev;

        @Override
        public StructObjectInspector initialize(ObjectInspector[] argOIs)
                throws UDFArgumentException {
            this.targetStdDev = new OnlineVariance();
            return super.initialize(argOIs);
        }

        @Override
        protected void preTrain(float target) {
            targetStdDev.handle(target);
        }

        @Override
        protected float loss(float target, float predicted) {
            float stddev = (float) targetStdDev.stddev();
            float e = epsilon * stddev;
            return LossFunctions.epsilonInsensitiveLoss(predicted, target, e);
        }

    }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy