it.unimi.dsi.fastutil.BigArrays Maven / Gradle / Ivy
package it.unimi.dsi.fastutil;
/*
* Copyright (C) 2010-2017 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* For the sorting code:
*
* Copyright (C) 1999 CERN - European Organization for Nuclear Research.
*
* Permission to use, copy, modify, distribute and sell this software and
* its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation. CERN makes no representations about the
* suitability of this software for any purpose. It is provided "as is"
* without expressed or implied warranty.
*/
import it.unimi.dsi.fastutil.ints.IntBigArrayBigList;
import it.unimi.dsi.fastutil.ints.IntBigArrays;
import it.unimi.dsi.fastutil.longs.LongComparator;
/**
* A class providing static methods and objects that do useful things with big
* arrays.
*
* Introducing big arrays
*
*
* A big array is an array-of-arrays representation of an array. The
* length of a big array is bounded by {@link #SEGMENT_SIZE} *
* {@link Integer#MAX_VALUE} = {@value #SEGMENT_SIZE} * (231 −
* 1) rather than {@link Integer#MAX_VALUE}. The type of a big array is that of
* an array-of-arrays, so a big array of integers is of type
* int[][]
. Note that {@link #SEGMENT_SIZE} has been chosen so that
* a single segment is smaller than 231 bytes independently of the
* data type. It might be enlarged in the future.
*
*
* If a
is a big array, a[0]
, a[1]
,
* … are called the segments of the big array. All segments,
* except possibly for the last one, are of length {@link #SEGMENT_SIZE}. Given
* an index i
into a big array, there is an associated
* {@linkplain #segment(long) segment} and an associated
* {@linkplain #displacement(long)
* displacement} into that segment. Access to single members happens by
* means of accessors defined in the type-specific versions (see, e.g.,
* {@link IntBigArrays#get(int[][], long)} and
* {@link IntBigArrays#set(int[][], long, int)}), but you can also use the
* methods {@link #segment(long)}/{@link #displacement(long)} to access entries
* manually.
*
*
Scanning big arrays
*
*
* You can scan a big array using the following idiomatic form:
*
*
* for(int s = 0; s < a.length; s++) {
* final int[] t = a[s];
* final int l = t.length;
* for(int d = 0; d < l; d++) {
* do something with t[d]
* }
* }
*
*
* or using the (simpler and usually faster) reversed version:
*
*
* for(int s = a.length; s-- != 0;) {
* final int[] t = a[s];
* for(int d = t.length; d-- != 0;) {
* do something with t[d]
* }
* }
*
*
* Inside the inner loop, the original index in a
can be retrieved
* using {@link #index(int, int) index(segment, displacement)}. You can also
* use an additional long to keep track of the index.
*
*
* Note that caching is essential in making these loops essentially as fast as
* those scanning standard arrays (as iterations of the outer loop happen very
* rarely). Using loops of this kind is extremely faster than using a standard
* loop and accessors.
*
*
* In some situations, you might want to iterate over a part of a big array
* having an offset and a length. In this case, the idiomatic loops are as
* follows:
*
*
* for(int s = segment(offset); s < segment(offset + length + SEGMENT_MASK); s++) {
* final int[] t = a[s];
* final int l = (int)Math.min(t.length, offset + length - start(s));
* for(int d = (int)Math.max(0, offset - start(s)); d < l; d++) {
* do something with t[d]
* }
* }
*
*
* or, in a reversed form,
*
*
* for(int s = segment(offset + length + SEGMENT_MASK); s-- != segment(offset);) {
* final int[] t = a[s];
* final int b = (int)Math.max(0, offset - start(s));
* for(int d = (int)Math.min(t.length, offset + length - start(s)); d-- != b ;) {
* do something with t[d]
* }
* }
*
*
* Literal big arrays
*
*
* A literal big array can be easily created by using the suitable type-specific
* wrap()
method (e.g., {@link IntBigArrays#wrap(int[])}) around a
* literal standard array. Alternatively, for very small arrays you can just
* declare a literal array-of-array (e.g., new int[][] { { 1, 2 } }
*). Be warned, however, that this can lead to creating illegal big arrays if
* for some reason (e.g., stress testing) {@link #SEGMENT_SIZE} is set to a
* value smaller than the inner array length.
*
*
Big alternatives
*
*
* If you find the kind of “bare hands” approach to big arrays not
* enough object-oriented, please use big lists based on big arrays (.e.g,
* {@link IntBigArrayBigList}). Big arrays follow the Java tradition of
* considering arrays as a “legal alien”—something in-between
* an object and a primitive type. This approach lacks the consistency of a full
* object-oriented approach, but provides some significant performance gains.
*
*
Additional methods
*
*
* In addition to commodity methods, this class contains {@link BigSwapper}
* -based implementations of
* {@linkplain #quickSort(long, long, LongComparator, BigSwapper) quicksort} and
* of a stable, in-place
* {@linkplain #mergeSort(long, long, LongComparator, BigSwapper) mergesort}.
* These generic sorting methods can be used to sort any kind of list, but they
* find their natural usage, for instance, in sorting big arrays in parallel.
*
* @see it.unimi.dsi.fastutil.Arrays
*/
public class BigArrays {
/**
* The shift used to compute the segment associated with an index
* (equivalently, the logarithm of the segment size).
*/
public final static int SEGMENT_SHIFT = 27;
/**
* The current size of a segment (227) is the largest size that
* makes the physical memory allocation for a single segment strictly
* smaller than 231 bytes.
*/
public final static int SEGMENT_SIZE = 1 << SEGMENT_SHIFT;
/** The mask used to compute the displacement associated to an index. */
public final static int SEGMENT_MASK = SEGMENT_SIZE - 1;
protected BigArrays() {
}
/**
* Computes the segment associated with a given index.
*
* @param index
* an index into a big array.
* @return the associated segment.
*/
public static int segment(final long index) {
return (int) (index >>> SEGMENT_SHIFT);
}
/**
* Computes the displacement associated with a given index.
*
* @param index
* an index into a big array.
* @return the associated displacement (in the associated
* {@linkplain #segment(long) segment}).
*/
public static int displacement(final long index) {
return (int) (index & SEGMENT_MASK);
}
/**
* Computes the starting index of a given segment.
*
* @param segment
* the segment of a big array.
* @return the starting index of the segment.
*/
public static long start(final int segment) {
return (long) segment << SEGMENT_SHIFT;
}
/**
* Computes the index associated with given segment and displacement.
*
* @param segment
* the segment of a big array.
* @param displacement
* the displacement into the segment.
* @return the associated index: that is, {@link #segment(long)
* segment(index(segment, displacement)) == segment} and
* {@link #displacement(long) displacement(index(segment,
* displacement)) == displacement}.
*/
public static long index(final int segment, final int displacement) {
return start(segment) + displacement;
}
/**
* Ensures that a range given by its first (inclusive) and last (exclusive)
* elements fits a big array of given length.
*
*
* This method may be used whenever a big array range check is needed.
*
* @param bigArrayLength
* a big-array length.
* @param from
* a start index (inclusive).
* @param to
* an end index (inclusive).
* @throws IllegalArgumentException
* if from
is greater than to
.
* @throws ArrayIndexOutOfBoundsException
* if from
or to
are greater than
* bigArrayLength
or negative.
*/
public static void ensureFromTo(final long bigArrayLength, final long from, final long to) {
if (from < 0) throw new ArrayIndexOutOfBoundsException("Start index (" + from + ") is negative");
if (from > to) throw new IllegalArgumentException("Start index (" + from + ") is greater than end index (" + to + ")");
if (to > bigArrayLength) throw new ArrayIndexOutOfBoundsException("End index (" + to + ") is greater than big-array length (" + bigArrayLength + ")");
}
/**
* Ensures that a range given by an offset and a length fits a big array of
* given length.
*
*
* This method may be used whenever a big array range check is needed.
*
* @param bigArrayLength
* a big-array length.
* @param offset
* a start index for the fragment
* @param length
* a length (the number of elements in the fragment).
* @throws IllegalArgumentException
* if length
is negative.
* @throws ArrayIndexOutOfBoundsException
* if offset
is negative or offset
+
* length
is greater than
* bigArrayLength
.
*/
public static void ensureOffsetLength(final long bigArrayLength, final long offset, final long length) {
if (offset < 0) throw new ArrayIndexOutOfBoundsException("Offset (" + offset + ") is negative");
if (length < 0) throw new IllegalArgumentException("Length (" + length + ") is negative");
if (offset + length > bigArrayLength) throw new ArrayIndexOutOfBoundsException("Last index (" + (offset + length) + ") is greater than big-array length (" + bigArrayLength + ")");
}
/**
* Ensures that a big-array length is legal.
*
* @param bigArrayLength
* a big-array length.
* @throws IllegalArgumentException
* if length
is negative, or larger than or equal
* to {@link #SEGMENT_SIZE} * {@link Integer#MAX_VALUE}.
*/
public static void ensureLength(final long bigArrayLength) {
if (bigArrayLength < 0) throw new IllegalArgumentException("Negative big-array size: " + bigArrayLength);
if (bigArrayLength >= (long) Integer.MAX_VALUE << SEGMENT_SHIFT) throw new IllegalArgumentException("Big-array size too big: " + bigArrayLength);
}
private static final int SMALL = 7;
private static final int MEDIUM = 40;
/**
* Transforms two consecutive sorted ranges into a single sorted range. The
* initial ranges are [first, middle)
and
* [middle, last)
, and the resulting range is
* [first, last)
. Elements in the first input range will
* precede equal elements in the second.
*/
private static void inPlaceMerge(final long from, long mid, final long to, final LongComparator comp, final BigSwapper swapper) {
if (from >= mid || mid >= to) return;
if (to - from == 2) {
if (comp.compare(mid, from) < 0) {
swapper.swap(from, mid);
}
return;
}
long firstCut;
long secondCut;
if (mid - from > to - mid) {
firstCut = from + (mid - from) / 2;
secondCut = lowerBound(mid, to, firstCut, comp);
} else {
secondCut = mid + (to - mid) / 2;
firstCut = upperBound(from, mid, secondCut, comp);
}
long first2 = firstCut;
long middle2 = mid;
long last2 = secondCut;
if (middle2 != first2 && middle2 != last2) {
long first1 = first2;
long last1 = middle2;
while (first1 < --last1)
swapper.swap(first1++, last1);
first1 = middle2;
last1 = last2;
while (first1 < --last1)
swapper.swap(first1++, last1);
first1 = first2;
last1 = last2;
while (first1 < --last1)
swapper.swap(first1++, last1);
}
mid = firstCut + (secondCut - mid);
inPlaceMerge(from, firstCut, mid, comp, swapper);
inPlaceMerge(mid, secondCut, to, comp, swapper);
}
/**
* Performs a binary search on an already sorted range: finds the first
* position where an element can be inserted without violating the ordering.
* Sorting is by a user-supplied comparison function.
*
* @param mid
* Beginning of the range.
* @param to
* One past the end of the range.
* @param firstCut
* Element to be searched for.
* @param comp
* Comparison function.
* @return The largest index i such that, for every j in the range
* [first, i)
, comp.apply(array[j], x)
is
* true
.
*/
private static long lowerBound(long mid, final long to, final long firstCut, final LongComparator comp) {
long len = to - mid;
while (len > 0) {
long half = len / 2;
long middle = mid + half;
if (comp.compare(middle, firstCut) < 0) {
mid = middle + 1;
len -= half + 1;
} else {
len = half;
}
}
return mid;
}
/** Returns the index of the median of three elements. */
private static long med3(final long a, final long b, final long c, final LongComparator comp) {
final int ab = comp.compare(a, b);
final int ac = comp.compare(a, c);
final int bc = comp.compare(b, c);
return (ab < 0 ? (bc < 0 ? b : ac < 0 ? c : a) : (bc > 0 ? b : ac > 0 ? c : a));
}
/**
* Sorts the specified range of elements using the specified big swapper and
* according to the order induced by the specified comparator using
* mergesort.
*
*
* This sort is guaranteed to be stable: equal elements will not be
* reordered as a result of the sort. The sorting algorithm is an in-place
* mergesort that is significantly slower than a standard mergesort, as its
* running time is
* O(n (log n)2), but it
* does not allocate additional memory; as a result, it can be used as a
* generic sorting algorithm.
*
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
* @param comp
* the comparator to determine the order of the generic data
* (arguments are positions).
* @param swapper
* an object that knows how to swap the elements at any two
* positions.
*/
public static void mergeSort(final long from, final long to, final LongComparator comp, final BigSwapper swapper) {
final long length = to - from;
// Insertion sort on smallest arrays
if (length < SMALL) {
for (long i = from; i < to; i++) {
for (long j = i; j > from && (comp.compare(j - 1, j) > 0); j--) {
swapper.swap(j, j - 1);
}
}
return;
}
// Recursively sort halves
long mid = (from + to) >>> 1;
mergeSort(from, mid, comp, swapper);
mergeSort(mid, to, comp, swapper);
// If list is already sorted, nothing left to do. This is an
// optimization that results in faster sorts for nearly ordered lists.
if (comp.compare(mid - 1, mid) <= 0) return;
// Merge sorted halves
inPlaceMerge(from, mid, to, comp, swapper);
}
/**
* Sorts the specified range of elements using the specified big swapper and
* according to the order induced by the specified comparator using
* quicksort.
*
*
* The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley
* and M. Douglas McIlroy, “Engineering a Sort Function”,
* Software: Practice and Experience, 23(11), pages 1249−1265,
* 1993.
*
* @param from
* the index of the first element (inclusive) to be sorted.
* @param to
* the index of the last element (exclusive) to be sorted.
* @param comp
* the comparator to determine the order of the generic data.
* @param swapper
* an object that knows how to swap the elements at any two
* positions.
*/
public static void quickSort(final long from, final long to, final LongComparator comp, final BigSwapper swapper) {
final long len = to - from;
// Insertion sort on smallest arrays
if (len < SMALL) {
for (long i = from; i < to; i++)
for (long j = i; j > from && (comp.compare(j - 1, j) > 0); j--) {
swapper.swap(j, j - 1);
}
return;
}
// Choose a partition element, v
long m = from + len / 2; // Small arrays, middle element
if (len > SMALL) {
long l = from, n = to - 1;
if (len > MEDIUM) { // Big arrays, pseudomedian of 9
long s = len / 8;
l = med3(l, l + s, l + 2 * s, comp);
m = med3(m - s, m, m + s, comp);
n = med3(n - 2 * s, n - s, n, comp);
}
m = med3(l, m, n, comp); // Mid-size, med of 3
}
// long v = x[m];
long a = from, b = a, c = to - 1, d = c;
// Establish Invariant: v* (v)* v*
while (true) {
int comparison;
while (b <= c && ((comparison = comp.compare(b, m)) <= 0)) {
if (comparison == 0) {
if (a == m) m = b; // moving target; DELTA to JDK !!!
else if (b == m) m = a; // moving target; DELTA to JDK !!!
swapper.swap(a++, b);
}
b++;
}
while (c >= b && ((comparison = comp.compare(c, m)) >= 0)) {
if (comparison == 0) {
if (c == m) m = d; // moving target; DELTA to JDK !!!
else if (d == m) m = c; // moving target; DELTA to JDK !!!
swapper.swap(c, d--);
}
c--;
}
if (b > c) break;
if (b == m) m = d; // moving target; DELTA to JDK !!!
else if (c == m) m = c; // moving target; DELTA to JDK !!!
swapper.swap(b++, c--);
}
// Swap partition elements back to middle
long s;
long n = from + len;
s = Math.min(a - from, b - a);
vecSwap(swapper, from, b - s, s);
s = Math.min(d - c, n - d - 1);
vecSwap(swapper, b, n - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > 1) quickSort(from, from + s, comp, swapper);
if ((s = d - c) > 1) quickSort(n - s, n, comp, swapper);
}
/**
* Performs a binary search on an already-sorted range: finds the last
* position where an element can be inserted without violating the ordering.
* Sorting is by a user-supplied comparison function.
*
* @param from
* Beginning of the range.
* @param mid
* One past the end of the range.
* @param secondCut
* Element to be searched for.
* @param comp
* Comparison function.
* @return The largest index i such that, for every j in the range
* [first, i)
, comp.apply(x, array[j])
is
* false
.
*/
private static long upperBound(long from, final long mid, final long secondCut, final LongComparator comp) {
long len = mid - from;
while (len > 0) {
long half = len / 2;
long middle = from + half;
if (comp.compare(secondCut, middle) < 0) {
len = half;
} else {
from = middle + 1;
len -= half + 1;
}
}
return from;
}
/** Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)]. */
private static void vecSwap(final BigSwapper swapper, long from, long l, final long s) {
for (int i = 0; i < s; i++, from++, l++)
swapper.swap(from, l);
}
public static void main(final String arg[]) {
int[][] a = IntBigArrays.newBigArray(1L << Integer.parseInt(arg[0]));
long x, y, z, start;
for (int k = 10; k-- != 0;) {
start = -System.currentTimeMillis();
x = 0;
for (long i = IntBigArrays.length(a); i-- != 0;)
x ^= i ^ IntBigArrays.get(a, i);
if (x == 0) System.err.println();
System.out.println("Single loop: " + (start + System.currentTimeMillis()) + "ms");
start = -System.currentTimeMillis();
y = 0;
for (int i = a.length; i-- != 0;) {
final int[] t = a[i];
for (int d = t.length; d-- != 0;)
y ^= t[d] ^ index(i, d);
}
if (y == 0) System.err.println();
if (x != y) throw new AssertionError();
System.out.println("Double loop: " + (start + System.currentTimeMillis()) + "ms");
z = 0;
long j = IntBigArrays.length(a);
for (int i = a.length; i-- != 0;) {
final int[] t = a[i];
for (int d = t.length; d-- != 0;)
y ^= t[d] ^ --j;
}
if (z == 0) System.err.println();
if (x != z) throw new AssertionError();
System.out.println("Double loop (with additional index): " + (start + System.currentTimeMillis()) + "ms");
}
}
}