All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.floats.Float2ReferenceOpenHashMap Maven / Gradle / Ivy

The newest version!
/*
	* Copyright (C) 2002-2017 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.floats;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Map;
import java.util.Arrays;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.objects.ReferenceCollection;
import it.unimi.dsi.fastutil.objects.AbstractReferenceCollection;
import it.unimi.dsi.fastutil.objects.AbstractObjectSet;
import it.unimi.dsi.fastutil.objects.ObjectIterator;
/** A type-specific hash map with a fast, small-footprint implementation.
	*
	* 

Instances of this class use a hash table to represent a map. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size. However, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * * @see Hash * @see HashCommon */ public class Float2ReferenceOpenHashMap extends AbstractFloat2ReferenceMap implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The array of keys. */ protected transient float[] key; /** The array of values. */ protected transient V[] value; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this set contains the key zero. */ protected transient boolean containsNullKey; /** The current table size. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** Number of entries in the set (including the key zero, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; /** Cached set of entries. */ protected transient FastEntrySet entries; /** Cached set of keys. */ protected transient FloatSet keys; /** Cached collection of values. */ protected transient ReferenceCollection values; /** Creates a new hash map. * *

The actual table size will be the least power of two greater than expected/f. * * @param expected the expected number of elements in the hash set. * @param f the load factor. */ @SuppressWarnings("unchecked") public Float2ReferenceOpenHashMap(final int expected, final float f) { if (f <= 0 || f > 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than or equal to 1"); if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; n = arraySize(expected, f); mask = n - 1; maxFill = maxFill(n, f); key = new float[n + 1]; value = (V[]) new Object[n + 1]; } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash map. */ public Float2ReferenceOpenHashMap(final int expected) { this(expected, DEFAULT_LOAD_FACTOR); } /** Creates a new hash map with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} entries * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public Float2ReferenceOpenHashMap() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } /** Creates a new hash map copying a given one. * * @param m a {@link Map} to be copied into the new hash map. * @param f the load factor. */ public Float2ReferenceOpenHashMap(final Map m, final float f) { this(m.size(), f); putAll(m); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given one. * * @param m a {@link Map} to be copied into the new hash map. */ public Float2ReferenceOpenHashMap(final Map m) { this(m, DEFAULT_LOAD_FACTOR); } /** Creates a new hash map copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. * @param f the load factor. */ public Float2ReferenceOpenHashMap(final Float2ReferenceMap m, final float f) { this(m.size(), f); putAll(m); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. */ public Float2ReferenceOpenHashMap(final Float2ReferenceMap m) { this(m, DEFAULT_LOAD_FACTOR); } /** Creates a new hash map using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @param f the load factor. * @throws IllegalArgumentException if k and v have different lengths. */ public Float2ReferenceOpenHashMap(final float[] k, final V[] v, final float f) { this(k.length, f); if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")"); for(int i = 0; i < k.length; i++) this.put(k[i], v[i]); } /** Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using the elements of two parallel arrays. * * @param k the array of keys of the new hash map. * @param v the array of corresponding values in the new hash map. * @throws IllegalArgumentException if k and v have different lengths. */ public Float2ReferenceOpenHashMap(final float[] k, final V[] v) { this(k, v, DEFAULT_LOAD_FACTOR); } private int realSize() { return containsNullKey ? size - 1 : size; } private void ensureCapacity(final int capacity) { final int needed = arraySize(capacity, f); if (needed > n) rehash(needed); } private void tryCapacity(final long capacity) { final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f)))); if (needed > n) rehash(needed); } private V removeEntry(final int pos) { final V oldValue = value[pos]; value[pos] = null; size--; shiftKeys(pos); if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } private V removeNullEntry() { containsNullKey = false; final V oldValue = value[n]; value[n] = null; size--; if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return oldValue; } @Override public void putAll(Map m) { if (f <= .5) ensureCapacity(m.size()); // The resulting map will be sized for m.size() elements else tryCapacity(size() + m.size()); // The resulting map will be tentatively sized for size() + m.size() elements super.putAll(m); } private int insert(final float k, final V v) { int pos; if (( Float.floatToIntBits(k) == 0 )) { if (containsNullKey) return n; containsNullKey = true; pos = n; } else { float curr; final float[] key = this.key; // The starting point. if (! ( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) { if (( Float.floatToIntBits(curr) == Float.floatToIntBits(k) )) return pos; while(! ( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) if (( Float.floatToIntBits(curr) == Float.floatToIntBits(k) )) return pos; } } key[pos] = k; value[pos] = v; if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); return -1; } @Override public V put(final float k, final V v) { final int pos = insert(k, v); if (pos < 0) return defRetValue; final V oldValue = value[pos]; value[pos] = v; return oldValue; } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; float curr; final float[] key = this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (( Float.floatToIntBits(curr = key[pos]) == 0 )) { key[last] = (0); value[last] = null; return; } slot = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(curr) ) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; value[last] = value[pos]; } } public V remove(final float k) { if (( Float.floatToIntBits(k) == 0 )) { if (containsNullKey) return removeNullEntry(); return defRetValue; } float curr; final float[] key = this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return defRetValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return removeEntry(pos); while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return defRetValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return removeEntry(pos); } } @Override public V get(final float k) { if (( Float.floatToIntBits(k) == 0 )) return containsNullKey ? value[n] : defRetValue; float curr; final float[] key = this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return defRetValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return value[pos]; // There's always an unused entry. while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return defRetValue; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return value[pos]; } } @Override public boolean containsKey(final float k) { if (( Float.floatToIntBits(k) == 0 )) return containsNullKey; float curr; final float[] key = this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return false; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return true; // There's always an unused entry. while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return false; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return true; } } @Override public boolean containsValue(final Object v) { final V value[] = this.value; final float key[] = this.key; if (containsNullKey && ( (value[n]) == (v) )) return true; for(int i = n; i-- != 0;) if (! ( Float.floatToIntBits(key[i]) == 0 ) && ( (value[i]) == (v) )) return true; return false; } /* Removes all elements from this map. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ @Override public void clear() { if (size == 0) return; size = 0; containsNullKey = false; Arrays.fill(key, (0)); Arrays.fill(value, null); } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } /** A no-op for backward compatibility. * * @param growthFactor unused. * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public void growthFactor(int growthFactor) {} /** Gets the growth factor (2). * * @return the growth factor of this set, which is fixed (2). * @see #growthFactor(int) * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public int growthFactor() { return 16; } /** The entry class for a hash map does not record key and value, but * rather the position in the hash table of the corresponding entry. This * is necessary so that calls to {@link java.util.Map.Entry#setValue(Object)} are reflected in * the map */ final class MapEntry implements Float2ReferenceMap.Entry , Map.Entry { // The table index this entry refers to, or -1 if this entry has been deleted. int index; MapEntry(final int index) { this.index = index; } MapEntry() {} @Override public float getFloatKey() { return key[index]; } @Override public V getValue() { return value[index]; } @Override public V setValue(final V v) { final V oldValue = value[index]; value[index] = v; return oldValue; } /** {@inheritDoc} * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public Float getKey() { return (Float.valueOf(key[index])); } @SuppressWarnings("unchecked") @Override public boolean equals(final Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return ( Float.floatToIntBits(key[index]) == Float.floatToIntBits(((e.getKey()).floatValue())) ) && ( (value[index]) == ((e.getValue())) ); } @Override public int hashCode() { return it.unimi.dsi.fastutil.HashCommon.float2int(key[index]) ^ ( (value[index]) == null ? 0 : System.identityHashCode(value[index]) ); } @Override public String toString() { return key[index] + "=>" + value[index]; } } /** An iterator over a hash map. */ private class MapIterator { /** The index of the last entry returned, if positive or zero; initially, {@link #n}. If negative, the last entry returned was that of the key of index {@code - pos - 1} from the {@link #wrapped} list. */ int pos = n; /** The index of the last entry that has been returned (more precisely, the value of {@link #pos} if {@link #pos} is positive, or {@link Integer#MIN_VALUE} if {@link #pos} is negative). It is -1 if either we did not return an entry yet, or the last returned entry has been removed. */ int last = -1; /** A downward counter measuring how many entries must still be returned. */ int c = size; /** A boolean telling us whether we should return the entry with the null key. */ boolean mustReturnNullKey = Float2ReferenceOpenHashMap.this.containsNullKey; /** A lazily allocated list containing keys of entries that have wrapped around the table because of removals. */ FloatArrayList wrapped; public boolean hasNext() { return c != 0; } public int nextEntry() { if (! hasNext()) throw new NoSuchElementException(); c--; if (mustReturnNullKey) { mustReturnNullKey = false; return last = n; } final float key[] = Float2ReferenceOpenHashMap.this.key; for(;;) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Integer.MIN_VALUE; final float k = wrapped.getFloat(- pos - 1); int p = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask; while (! ( Float.floatToIntBits(k) == Float.floatToIntBits(key[p]) )) p = (p + 1) & mask; return p; } if (! ( Float.floatToIntBits(key[pos]) == 0 )) return last = pos; } } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ private final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; float curr; final float[] key = Float2ReferenceOpenHashMap.this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (( Float.floatToIntBits(curr = key[pos]) == 0 )) { key[last] = (0); value[last] = null; return; } slot = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(curr) ) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } if (pos < last) { // Wrapped entry. if (wrapped == null) wrapped = new FloatArrayList (2); wrapped.add(key[pos]); } key[last] = curr; value[last] = value[pos]; } } public void remove() { if (last == -1) throw new IllegalStateException(); if (last == n) { containsNullKey = false; value[n] = null; } else if (pos >= 0) shiftKeys(last); else { // We're removing wrapped entries. Float2ReferenceOpenHashMap.this.remove(wrapped.getFloat(- pos - 1)); last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if (ASSERTS) checkTable(); } public int skip(final int n) { int i = n; while(i-- != 0 && hasNext()) nextEntry(); return n - i - 1; } } private class EntryIterator extends MapIterator implements ObjectIterator > { private MapEntry entry; @Override public MapEntry next() { return entry = new MapEntry(nextEntry()); } @Override public void remove() { super.remove(); entry.index = -1; // You cannot use a deleted entry. } } private class FastEntryIterator extends MapIterator implements ObjectIterator > { private final MapEntry entry = new MapEntry(); @Override public MapEntry next() { entry.index = nextEntry(); return entry; } } private final class MapEntrySet extends AbstractObjectSet > implements FastEntrySet { public ObjectIterator > iterator() { return new EntryIterator(); } public ObjectIterator > fastIterator() { return new FastEntryIterator(); } @Override @SuppressWarnings("unchecked") public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null || ! (e.getKey() instanceof Float)) return false; final float k = ((((Float)( e.getKey())).floatValue())); final V v = ((V) e.getValue()); if (( Float.floatToIntBits(k) == 0 )) return Float2ReferenceOpenHashMap.this.containsNullKey && ( (value[n]) == (v) ); float curr; final float[] key = Float2ReferenceOpenHashMap.this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return false; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return ( (value[pos]) == (v) ); // There's always an unused entry. while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return false; if (( Float.floatToIntBits(k) == Float.floatToIntBits(curr) )) return ( (value[pos]) == (v) ); } } @Override @SuppressWarnings("unchecked") public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null || ! (e.getKey() instanceof Float)) return false; final float k = ((((Float)( e.getKey())).floatValue())); final V v = ((V) e.getValue()); if (( Float.floatToIntBits(k) == 0 )) { if (containsNullKey && ( (value[n]) == (v) )) { removeNullEntry(); return true; } return false; } float curr; final float[] key = Float2ReferenceOpenHashMap.this.key; int pos; // The starting point. if (( Float.floatToIntBits(curr = key[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask]) == 0 )) return false; if (( Float.floatToIntBits(curr) == Float.floatToIntBits(k) )) { if (( (value[pos]) == (v) )) { removeEntry(pos); return true; } return false; } while(true) { if (( Float.floatToIntBits(curr = key[pos = (pos + 1) & mask]) == 0 )) return false; if (( Float.floatToIntBits(curr) == Float.floatToIntBits(k) )) { if (( (value[pos]) == (v) )) { removeEntry(pos); return true; } } } } @Override public int size() { return size; } @Override public void clear() { Float2ReferenceOpenHashMap.this.clear(); } } @Override public FastEntrySet float2ReferenceEntrySet() { if (entries == null) entries = new MapEntrySet(); return entries; } /** An iterator on keys. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods * (and possibly their type-specific counterparts) so that they return keys * instead of entries. */ private final class KeyIterator extends MapIterator implements FloatIterator { public KeyIterator() { super(); } @Override public float nextFloat() { return key[nextEntry()]; } @Deprecated @Override public Float next() { return (Float.valueOf(key[nextEntry()])); } } private final class KeySet extends AbstractFloatSet { @Override public FloatIterator iterator() { return new KeyIterator(); } @Override public int size() { return size; } @Override public boolean contains(float k) { return containsKey(k); } @Override public boolean remove(float k) { final int oldSize = size; Float2ReferenceOpenHashMap.this.remove(k); return size != oldSize; } @Override public void clear() { Float2ReferenceOpenHashMap.this.clear(); } } @Override public FloatSet keySet() { if (keys == null) keys = new KeySet(); return keys; } /** An iterator on values. * *

We simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods * (and possibly their type-specific counterparts) so that they return values * instead of entries. */ private final class ValueIterator extends MapIterator implements ObjectIterator { public ValueIterator() { super(); } @Override public V next() { return value[nextEntry()]; } } @Override public ReferenceCollection values() { if (values == null) values = new AbstractReferenceCollection () { @Override public ObjectIterator iterator() { return new ValueIterator(); } @Override public int size() { return size; } @Override public boolean contains(Object v) { return containsValue(v); } @Override public void clear() { Float2ReferenceOpenHashMap.this.clear(); } }; return values; } /** A no-op for backward compatibility. The kind of tables implemented by * this class never need rehashing. * *

If you need to reduce the table size to fit exactly * this set, use {@link #trim()}. * * @return true. * @see #trim() * @deprecated A no-op. */ @Deprecated public boolean rehash() { return true; } /** Rehashes the map, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the * load factor. It can be used when the set will not be changed anymore, so * to optimize access speed and size. * *

If the table size is already the minimum possible, this method * does nothing. * * @return true if there was enough memory to trim the map. * @see #trim(int) */ public boolean trim() { final int l = arraySize(size, f); if (l >= n || size > maxFill(l, f)) return true; try { rehash(l); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes this map if the table is too large. * *

Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load factor. If the current * table size is smaller than or equal to N, this method does * nothing. Otherwise, it rehashes this map in a table of size * N. * *

This method is useful when reusing maps. {@linkplain #clear() Clearing a * map} leaves the table size untouched. If you are reusing a map * many times, you can call this method with a typical * size to avoid keeping around a very large table just * because of a few large transient maps. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the map. * @see #trim() */ public boolean trim(final int n) { final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f)); if (l >= n || size > maxFill(l, f)) return true; try { rehash(l); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes the map. * *

This method implements the basic rehashing strategy, and may be * overriden by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN the new size */ @SuppressWarnings("unchecked") protected void rehash(final int newN) { final float key[] = this.key; final V value[] = this.value; final int mask = newN - 1; // Note that this is used by the hashing macro final float newKey[] = new float[newN + 1]; final V newValue[] = (V[]) new Object[newN + 1]; int i = n, pos; for(int j = realSize(); j-- != 0;) { while(( Float.floatToIntBits(key[--i]) == 0 )); if (! ( Float.floatToIntBits(newKey[pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(key[i]) ) & mask]) == 0 )) while (! ( Float.floatToIntBits(newKey[pos = (pos + 1) & mask]) == 0 )); newKey[pos] = key[i]; newValue[pos] = value[i]; } newValue[newN] = value[n]; n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; this.value = newValue; } /** Returns a deep copy of this map. * *

This method performs a deep copy of this hash map; the data stored in the * map, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this map. */ @Override @SuppressWarnings("unchecked") public Float2ReferenceOpenHashMap clone() { Float2ReferenceOpenHashMap c; try { c = (Float2ReferenceOpenHashMap )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.containsNullKey = containsNullKey; c.key = key.clone(); c.value = value.clone(); return c; } /** Returns a hash code for this map. * * This method overrides the generic method provided by the superclass. * Since equals() is not overriden, it is important * that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this map. */ @Override public int hashCode() { int h = 0; for(int j = realSize(), i = 0, t = 0; j-- != 0;) { while(( Float.floatToIntBits(key[i]) == 0 )) i++; t = it.unimi.dsi.fastutil.HashCommon.float2int(key[i]); if (this != value[i]) t ^= ( (value[i]) == null ? 0 : System.identityHashCode(value[i]) ); h += t; i++; } // Zero / null keys have hash zero. if (containsNullKey) h += ( (value[n]) == null ? 0 : System.identityHashCode(value[n]) ); return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final float key[] = this.key; final V value[] = this.value; final MapIterator i = new MapIterator(); s.defaultWriteObject(); for(int j = size, e; j-- != 0;) { e = i.nextEntry(); s.writeFloat(key[e]); s.writeObject(value[e]); } } @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize(size, f); maxFill = maxFill(n, f); mask = n - 1; final float key[] = this.key = new float[n + 1]; final V value[] = this.value = (V[]) new Object[n + 1]; float k; V v; for(int i = size, pos; i-- != 0;) { k = s.readFloat(); v = (V) s.readObject(); if (( Float.floatToIntBits(k) == 0 )) { pos = n; containsNullKey = true; } else { pos = it.unimi.dsi.fastutil.HashCommon.mix( it.unimi.dsi.fastutil.HashCommon.float2int(k) ) & mask; while (! ( Float.floatToIntBits(key[pos]) == 0 )) pos = (pos + 1) & mask; } key[pos] = k; value[pos] = v; } if (ASSERTS) checkTable(); } private void checkTable() {} }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy