it.unimi.dsi.fastutil.floats.FloatBigArrayBigList Maven / Gradle / Ivy
/*
* Copyright (C) 2002-2017 Sebastiano Vigna
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package it.unimi.dsi.fastutil.floats;
import java.util.Collection;
import java.util.Iterator;
import java.util.RandomAccess;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.BigArrays;
/** A type-specific big list based on a big array; provides some additional methods that use polymorphism to avoid (un)boxing.
*
* This class implements a lightweight, fast, open, optimized,
* reuse-oriented version of big-array-based big lists. Instances of this class
* represent a big list with a big array that is enlarged as needed when new entries
* are created (by doubling the current length), but is
* never made smaller (even on a {@link #clear()}). A family of
* {@linkplain #trim() trimming methods} lets you control the size of the
* backing big array; this is particularly useful if you reuse instances of this class.
* Range checks are equivalent to those of {@link java.util}'s classes, but
* they are delayed as much as possible. The backing big array is exposed by the
* {@link #elements()} method.
*
*
This class implements the bulk methods removeElements()
,
* addElements()
and getElements()
using
* high-performance system calls (e.g., {@link
* System#arraycopy(Object,int,Object,int,int) System.arraycopy()} instead of
* expensive loops.
*
* @see java.util.ArrayList
*/
public class FloatBigArrayBigList extends AbstractFloatBigList implements RandomAccess, Cloneable, java.io.Serializable {
private static final long serialVersionUID = -7046029254386353130L;
/** The initial default capacity of a big-array big list. */
public final static int DEFAULT_INITIAL_CAPACITY = 16;
/** The backing big array. */
protected transient float a[][];
/** The current actual size of the big list (never greater than the backing-array length). */
protected long size;
private static final boolean ASSERTS = false;
/** Creates a new big-array big list using a given array.
*
*
This constructor is only meant to be used by the wrapping methods.
*
* @param a the big array that will be used to back this big-array big list.
*/
protected FloatBigArrayBigList(final float a[][], boolean dummy) {
this.a = a;
}
/** Creates a new big-array big list with given capacity.
*
* @param capacity the initial capacity of the array list (may be 0).
*/
public FloatBigArrayBigList(final long capacity) {
if (capacity < 0) throw new IllegalArgumentException("Initial capacity (" + capacity + ") is negative");
a = FloatBigArrays.newBigArray(capacity);
}
/** Creates a new big-array big list with {@link #DEFAULT_INITIAL_CAPACITY} capacity.
*/
public FloatBigArrayBigList() {
this(DEFAULT_INITIAL_CAPACITY);
}
/** Creates a new big-array big list and fills it with a given type-specific collection.
*
* @param c a type-specific collection that will be used to fill the array list.
*/
public FloatBigArrayBigList(final FloatCollection c) {
this(c.size());
for(FloatIterator i = c.iterator(); i.hasNext();) add(i.nextFloat());
}
/** Creates a new big-array big list and fills it with a given type-specific list.
*
* @param l a type-specific list that will be used to fill the array list.
*/
public FloatBigArrayBigList(final FloatBigList l) {
this(l.size64());
l.getElements(0, a, 0, size = l.size64());
}
/** Creates a new big-array big list and fills it with the elements of a given big array.
*
*
Note that this constructor makes it easy to build big lists from literal arrays
* declared as type[][] {{ init_values }}
.
* The only constraint is that the number of initialisation values is
* below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}.
*
* @param a a big array whose elements will be used to fill the array list.
*/
public FloatBigArrayBigList(final float a[][]) {
this(a, 0, FloatBigArrays.length(a));
}
/** Creates a new big-array big list and fills it with the elements of a given big array.
*
*
Note that this constructor makes it easy to build big lists from literal arrays
* declared as type[][] {{ init_values }}
.
* The only constraint is that the number of initialisation values is
* below {@link it.unimi.dsi.fastutil.BigArrays#SEGMENT_SIZE}.
*
* @param a a big array whose elements will be used to fill the array list.
* @param offset the first element to use.
* @param length the number of elements to use.
*/
public FloatBigArrayBigList(final float a[][], final long offset, final long length) {
this(length);
FloatBigArrays.copy(a, offset, this.a, 0, length);
size = length;
}
/** Creates a new big-array big list and fills it with the elements returned by an iterator..
*
* @param i an iterator whose returned elements will fill the array list.
*/
public FloatBigArrayBigList(final Iterator extends Float> i) {
this();
while(i.hasNext()) this.add(((i.next()).floatValue()));
}
/** Creates a new big-array big list and fills it with the elements returned by a type-specific iterator..
*
* @param i a type-specific iterator whose returned elements will fill the array list.
*/
public FloatBigArrayBigList(final FloatIterator i) {
this();
while(i.hasNext()) this.add(i.nextFloat());
}
/** Returns the backing big array of this big list.
*
* @return the backing big array.
*/
public float[][] elements() {
return a;
}
/** Wraps a given big array into a big-array list of given size.
*
* @param a a big array to wrap.
* @param length the length of the resulting big-array list.
* @return a new big-array list of the given size, wrapping the given big array.
*/
public static FloatBigArrayBigList wrap(final float a[][], final long length) {
if (length > FloatBigArrays.length(a)) throw new IllegalArgumentException("The specified length (" + length + ") is greater than the array size (" + FloatBigArrays.length(a) + ")");
final FloatBigArrayBigList l = new FloatBigArrayBigList (a, false);
l.size = length;
return l;
}
/** Wraps a given big array into a big-array big list.
*
* @param a a big array to wrap.
* @return a new big-array big list wrapping the given array.
*/
public static FloatBigArrayBigList wrap(final float a[][]) {
return wrap(a, FloatBigArrays.length(a));
}
/** Ensures that this big-array big list can contain the given number of entries without resizing.
*
* @param capacity the new minimum capacity for this big-array big list.
*/
public void ensureCapacity(final long capacity) {
a = FloatBigArrays.ensureCapacity(a, capacity, size);
if (ASSERTS) assert size <= FloatBigArrays.length(a);
}
/** Grows this big-array big list, ensuring that it can contain the given number of entries without resizing,
* and in case enlarging it at least by a factor of two.
*
* @param capacity the new minimum capacity for this big-array big list.
*/
private void grow(final long capacity) {
a = FloatBigArrays.grow(a, capacity, size);
if (ASSERTS) assert size <= FloatBigArrays.length(a);
}
@Override
public void add(final long index, final float k) {
ensureIndex(index);
grow(size + 1);
if (index != size) FloatBigArrays.copy(a, index, a, index + 1, size - index);
FloatBigArrays.set(a, index, k);
size++;
if (ASSERTS) assert size <= FloatBigArrays.length(a);
}
@Override
public boolean add(final float k) {
grow(size + 1);
FloatBigArrays.set(a, size++, k);
if (ASSERTS) assert size <= FloatBigArrays.length(a);
return true;
}
@Override
public float getFloat(final long index) {
if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
return FloatBigArrays.get(a, index);
}
@Override
public long indexOf(final float k) {
for(long i = 0; i < size; i++) if (( Float.floatToIntBits(k) == Float.floatToIntBits(FloatBigArrays.get(a, i)) )) return i;
return -1;
}
@Override
public long lastIndexOf(final float k) {
for(long i = size; i-- != 0;) if (( Float.floatToIntBits(k) == Float.floatToIntBits(FloatBigArrays.get(a, i)) )) return i;
return -1;
}
@Override
public float removeFloat(final long index) {
if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
final float old = FloatBigArrays.get(a, index);
size--;
if (index != size) FloatBigArrays.copy(a, index + 1, a, index, size - index);
if (ASSERTS) assert size <= FloatBigArrays.length(a);
return old;
}
@Override
public boolean rem(final float k) {
final long index = indexOf(k);
if (index == -1) return false;
removeFloat(index);
if (ASSERTS) assert size <= FloatBigArrays.length(a);
return true;
}
@Override
public float set(final long index, final float k) {
if (index >= size) throw new IndexOutOfBoundsException("Index (" + index + ") is greater than or equal to list size (" + size + ")");
float old = FloatBigArrays.get(a, index);
FloatBigArrays.set(a, index, k);
return old;
}
@Override
public boolean removeAll(final FloatCollection c) {
float[] s = null, d = null;
int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE;
for (long i = 0; i < size; i++) {
if (sd == BigArrays.SEGMENT_SIZE) {
sd = 0;
s = a[++ss];
}
if (!c.contains(s[sd])) {
if (dd == BigArrays.SEGMENT_SIZE) {
d = a[++ds];
dd = 0;
}
d[dd++] = s[sd];
}
sd++;
}
final long j = BigArrays.index(ds, dd);
final boolean modified = size != j;
size = j;
return modified;
}
@Override
public boolean removeAll(final Collection> c) {
float[] s = null, d = null;
int ss = -1, sd = BigArrays.SEGMENT_SIZE, ds = -1, dd = BigArrays.SEGMENT_SIZE;
for (long i = 0; i < size; i++) {
if (sd == BigArrays.SEGMENT_SIZE) {
sd = 0;
s = a[++ss];
}
if (!c.contains((Float.valueOf(s[sd])))) {
if (dd == BigArrays.SEGMENT_SIZE) {
d = a[++ds];
dd = 0;
}
d[dd++] = s[sd];
}
sd++;
}
final long j = BigArrays.index(ds, dd);
final boolean modified = size != j;
size = j;
return modified;
}
@Override
public void clear() {
size = 0;
if (ASSERTS) assert size <= FloatBigArrays.length(a);
}
@Override
public long size64() {
return size;
}
@Override
public void size(final long size) {
if (size > FloatBigArrays.length(a)) ensureCapacity(size);
if (size > this.size) FloatBigArrays.fill(a, this.size, size, (0));
this.size = size;
}
@Override
public boolean isEmpty() {
return size == 0;
}
/** Trims this big-array big list so that the capacity is equal to the size.
*
* @see java.util.ArrayList#trimToSize()
*/
public void trim() {
trim(0);
}
/** Trims the backing big array if it is too large.
*
* If the current big array length is smaller than or equal to
* n
, this method does nothing. Otherwise, it trims the
* big-array length to the maximum between n
and {@link #size64()}.
*
*
This method is useful when reusing big lists. {@linkplain #clear() Clearing a
* big list} leaves the big-array length untouched. If you are reusing a big list
* many times, you can call this method with a typical
* size to avoid keeping around a very large big array just
* because of a few large transient big lists.
*
* @param n the threshold for the trimming.
*/
public void trim(final long n) {
final long arrayLength = FloatBigArrays.length(a);
if (n >= arrayLength || size == arrayLength) return;
a = FloatBigArrays.trim(a, Math.max(n, size));
if (ASSERTS) assert size <= FloatBigArrays.length(a);
}
/** Copies element of this type-specific list into the given big array using optimized system calls.
*
* @param from the start index (inclusive).
* @param a the destination big array.
* @param offset the offset into the destination array where to store the first element copied.
* @param length the number of elements to be copied.
*/
@Override
public void getElements(final long from, final float[][] a, final long offset, final long length) {
FloatBigArrays.copy(this.a, from, a, offset, length);
}
/** Removes elements of this type-specific list using optimized system calls.
*
* @param from the start index (inclusive).
* @param to the end index (exclusive).
*/
@Override
public void removeElements(final long from, final long to) {
BigArrays.ensureFromTo(size, from, to);
FloatBigArrays.copy(a, to, a, from, size - to);
size -= (to - from);
}
/** Adds elements to this type-specific list using optimized system calls.
*
* @param index the index at which to add elements.
* @param a the big array containing the elements.
* @param offset the offset of the first element to add.
* @param length the number of elements to add.
*/
@Override
public void addElements(final long index, final float a[][], final long offset, final long length) {
ensureIndex(index);
FloatBigArrays.ensureOffsetLength(a, offset, length);
grow(size + length);
FloatBigArrays.copy(this.a, index, this.a, index + length, size - index);
FloatBigArrays.copy(a, offset, this.a, index, length);
size += length;
}
@Override
public FloatBigListIterator listIterator(final long index) {
ensureIndex(index);
return new AbstractFloatBigListIterator () {
long pos = index, last = -1;
public boolean hasNext() { return pos < size; }
public boolean hasPrevious() { return pos > 0; }
public float nextFloat() { if (! hasNext()) throw new NoSuchElementException(); return FloatBigArrays.get(a, last = pos++); }
public float previousFloat() { if (! hasPrevious()) throw new NoSuchElementException(); return FloatBigArrays.get(a, last = --pos); }
public long nextIndex() { return pos; }
public long previousIndex() { return pos - 1; }
public void add(float k) {
FloatBigArrayBigList.this.add(pos++, k);
last = -1;
}
public void set(float k) {
if (last == -1) throw new IllegalStateException();
FloatBigArrayBigList.this.set(last, k);
}
public void remove() {
if (last == -1) throw new IllegalStateException();
FloatBigArrayBigList.this.removeFloat(last);
/* If the last operation was a next(), we are removing an element *before* us, and we must decrease pos correspondingly. */
if (last < pos) pos--;
last = -1;
}
};
}
@Override
public FloatBigArrayBigList clone() {
FloatBigArrayBigList c = new FloatBigArrayBigList (size);
FloatBigArrays.copy(a, 0, c.a, 0, size);
c.size = size;
return c;
}
/** Compares this type-specific big-array list to another one.
*
*
This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l a type-specific big-array list.
* @return true if the argument contains the same elements of this type-specific big-array list.
*/
public boolean equals(final FloatBigArrayBigList l) {
if (l == this) return true;
long s = size64();
if (s != l.size64()) return false;
final float[][] a1 = a;
final float[][] a2 = l.a;
while(s-- != 0) if (FloatBigArrays.get(a1, s) != FloatBigArrays.get(a2, s)) return false;
return true;
}
/** Compares this big list to another big list.
*
*
This method exists only for sake of efficiency. The implementation
* inherited from the abstract implementation would already work.
*
* @param l a big list.
* @return a negative integer,
* zero, or a positive integer as this big list is lexicographically less than, equal
* to, or greater than the argument.
*/
public int compareTo(final FloatBigArrayBigList l) {
final long s1 = size64(), s2 = l.size64();
final float a1[][] = a, a2[][] = l.a;
float e1, e2;
int r, i;
for(i = 0; i < s1 && i < s2; i++) {
e1 = FloatBigArrays.get(a1, i);
e2 = FloatBigArrays.get(a2, i);
if ((r = ( Float.compare((e1),(e2)) )) != 0) return r;
}
return i < s2 ? -1 : (i < s1 ? 1 : 0);
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
s.defaultWriteObject();
for(int i = 0; i < size; i++) s.writeFloat(FloatBigArrays.get(a, i));
}
private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
a = FloatBigArrays.newBigArray(size);
for(int i = 0; i < size; i++) FloatBigArrays.set(a, i, s.readFloat());
}
}