All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.ints.Int2LongRBTreeMap Maven / Gradle / Ivy

The newest version!
/*
	* Copyright (C) 2002-2017 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.ints;
import it.unimi.dsi.fastutil.objects.AbstractObjectSortedSet;
import it.unimi.dsi.fastutil.objects.ObjectBidirectionalIterator;
import it.unimi.dsi.fastutil.objects.ObjectListIterator;
import it.unimi.dsi.fastutil.objects.ObjectSortedSet;
import it.unimi.dsi.fastutil.longs.LongCollection;
import it.unimi.dsi.fastutil.longs.AbstractLongCollection;
import it.unimi.dsi.fastutil.longs.LongIterator;
import java.util.Comparator;
import java.util.Iterator;
import java.util.Map;
import java.util.SortedMap;
import java.util.NoSuchElementException;
import it.unimi.dsi.fastutil.longs.LongListIterator;
/** A type-specific red-black tree map with a fast, small-footprint implementation.
	*
	* 

The iterators provided by the views of this class are type-specific {@linkplain * it.unimi.dsi.fastutil.BidirectionalIterator bidirectional iterators}. * Moreover, the iterator returned by iterator() can be safely cast * to a type-specific {@linkplain java.util.ListIterator list iterator}. * */ public class Int2LongRBTreeMap extends AbstractInt2LongSortedMap implements java.io.Serializable, Cloneable { /** A reference to the root entry. */ protected transient Entry tree; /** Number of entries in this map. */ protected int count; /** The first key in this map. */ protected transient Entry firstEntry; /** The last key in this map. */ protected transient Entry lastEntry; /** Cached set of entries. */ protected transient ObjectSortedSet entries; /** Cached set of keys. */ protected transient IntSortedSet keys; /** Cached collection of values. */ protected transient LongCollection values; /** The value of this variable remembers, after a put() * or a remove(), whether the domain of the map * has been modified. */ protected transient boolean modified; /** This map's comparator, as provided in the constructor. */ protected Comparator storedComparator; /** This map's actual comparator; it may differ from {@link #storedComparator} because it is always a type-specific comparator, so it could be derived from the former by wrapping. */ protected transient IntComparator actualComparator; private static final long serialVersionUID = -7046029254386353129L; private static final boolean ASSERTS = false; { allocatePaths(); } /** Creates a new empty tree map. */ public Int2LongRBTreeMap() { tree = null; count = 0; } /** Generates the comparator that will be actually used. * *

When a specific {@link Comparator} is specified and stored in {@link * #storedComparator}, we must check whether it is type-specific. If it is * so, we can used directly, and we store it in {@link #actualComparator}. Otherwise, * we generate on-the-fly an anonymous class that wraps the non-specific {@link Comparator} * and makes it into a type-specific one. */ private void setActualComparator() { /* If the provided comparator is already type-specific, we use it. Otherwise, we use a wrapper anonymous class to fake that it is type-specific. */ if (storedComparator == null || storedComparator instanceof IntComparator) actualComparator = (IntComparator)storedComparator; else actualComparator = new IntComparator () { public int compare(int k1, int k2) { return storedComparator.compare((Integer.valueOf(k1)), (Integer.valueOf(k2))); } public int compare(Integer ok1, Integer ok2) { return storedComparator.compare(ok1, ok2); } }; } /** Creates a new empty tree map with the given comparator. * * @param c a (possibly type-specific) comparator. */ public Int2LongRBTreeMap(final Comparator c) { this(); storedComparator = c; setActualComparator(); } /** Creates a new tree map copying a given map. * * @param m a {@link Map} to be copied into the new tree map. */ public Int2LongRBTreeMap(final Map m) { this(); putAll(m); } /** Creates a new tree map copying a given sorted map (and its {@link Comparator}). * * @param m a {@link SortedMap} to be copied into the new tree map. */ public Int2LongRBTreeMap(final SortedMap m) { this(m.comparator()); putAll(m); } /** Creates a new tree map copying a given map. * * @param m a type-specific map to be copied into the new tree map. */ public Int2LongRBTreeMap(final Int2LongMap m) { this(); putAll(m); } /** Creates a new tree map copying a given sorted map (and its {@link Comparator}). * * @param m a type-specific sorted map to be copied into the new tree map. */ public Int2LongRBTreeMap(final Int2LongSortedMap m) { this(m.comparator()); putAll(m); } /** Creates a new tree map using the elements of two parallel arrays and the given comparator. * * @param k the array of keys of the new tree map. * @param v the array of corresponding values in the new tree map. * @param c a (possibly type-specific) comparator. * @throws IllegalArgumentException if k and v have different lengths. */ public Int2LongRBTreeMap(final int[] k, final long v[], final Comparator c) { this(c); if (k.length != v.length) throw new IllegalArgumentException("The key array and the value array have different lengths (" + k.length + " and " + v.length + ")"); for(int i = 0; i < k.length; i++) this.put(k[i], v[i]); } /** Creates a new tree map using the elements of two parallel arrays. * * @param k the array of keys of the new tree map. * @param v the array of corresponding values in the new tree map. * @throws IllegalArgumentException if k and v have different lengths. */ public Int2LongRBTreeMap(final int[] k, final long v[]) { this(k, v, null); } /* * The following methods implements some basic building blocks used by * all accessors. They are (and should be maintained) identical to those used in RBTreeSet.drv. * * The put()/remove() code is derived from Ben Pfaff's GNU libavl * (http://www.msu.edu/~pfaffben/avl/). If you want to understand what's * going on, you should have a look at the literate code contained therein * first. */ /** Compares two keys in the right way. * *

This method uses the {@link #actualComparator} if it is non-{@code null}. * Otherwise, it resorts to primitive type comparisons or to {@link Comparable#compareTo(Object) compareTo()}. * * @param k1 the first key. * @param k2 the second key. * @return a number smaller than, equal to or greater than 0, as usual * (i.e., when k1 < k2, k1 = k2 or k1 > k2, respectively). */ final int compare(final int k1, final int k2) { return actualComparator == null ? ( Integer.compare((k1),(k2)) ) : actualComparator.compare(k1, k2); } /** Returns the entry corresponding to the given key, if it is in the tree; {@code null}, otherwise. * * @param k the key to search for. * @return the corresponding entry, or {@code null} if no entry with the given key exists. */ final Entry findKey(final int k) { Entry e = tree; int cmp; while (e != null && (cmp = compare(k, e.key)) != 0) e = cmp < 0 ? e.left() : e.right(); return e; } /** Locates a key. * * @param k a key. * @return the last entry on a search for the given key; this will be * the given key, if it present; otherwise, it will be either the smallest greater key or the greatest smaller key. */ final Entry locateKey(final int k) { Entry e = tree, last = tree; int cmp = 0; while (e != null && (cmp = compare(k, e.key)) != 0) { last = e; e = cmp < 0 ? e.left() : e.right(); } return cmp == 0 ? e : last; } /** This vector remembers the path and the direction followed during the * current insertion. It suffices for about 232 entries. */ private transient boolean dirPath[]; private transient Entry nodePath[]; private void allocatePaths() { dirPath = new boolean[64]; nodePath = new Entry[64]; } /** Adds an increment to value currently associated with a key. * *

Note that this method respects the {@linkplain #defaultReturnValue() default return value} semantics: when * called with a key that does not currently appears in the map, the key * will be associated with the default return value plus * the given increment. * * @param k the key. * @param incr the increment. * @return the old value, or the {@linkplain #defaultReturnValue() default return value} if no value was present for the given key. */ public long addTo(final int k, final long incr) { Entry e = add(k); final long oldValue = e.value; e.value += incr; return oldValue; } @Override public long put(final int k, final long v) { Entry e = add(k); final long oldValue = e.value; e.value = v; return oldValue; } /** Returns a node with key k in the balanced tree, creating one with defRetValue if necessary. * * @param k the key * @return a node with key k. If a node with key k already exists, then that node is returned, * otherwise a new node with defRetValue is created ensuring that the tree is balanced * after creation of the node. */ private Entry add(final int k) { /* After execution of this method, modified is true iff a new entry has been inserted. */ modified = false; int maxDepth = 0; Entry e; if (tree == null) { // The case of the empty tree is treated separately. count++; e = tree = lastEntry = firstEntry = new Entry (k, defRetValue); } else { Entry p = tree; int cmp, i = 0; while(true) { if ((cmp = compare(k, p.key)) == 0) { // We clean up the node path, or we could have stale references later. while(i-- != 0) nodePath[i] = null; return p; } nodePath[i] = p; if (dirPath[i++] = cmp > 0) { if (p.succ()) { count++; e = new Entry (k, defRetValue); if (p.right == null) lastEntry = e; e.left = p; e.right = p.right; p.right(e); break; } p = p.right; } else { if (p.pred()) { count++; e = new Entry (k, defRetValue); if (p.left == null) firstEntry = e; e.right = p; e.left = p.left; p.left(e); break; } p = p.left; } } modified = true; maxDepth = i--; while(i > 0 && ! nodePath[i].black()) { if (! dirPath[i - 1]) { Entry y = nodePath[i - 1].right; if (! nodePath[i - 1].succ() && ! y.black()) { nodePath[i].black(true); y.black(true); nodePath[i - 1].black(false); i -= 2; } else { Entry x; if (! dirPath[i]) y = nodePath[i]; else { x = nodePath[i]; y = x.right; x.right = y.left; y.left = x; nodePath[i - 1].left = y; if (y.pred()) { y.pred(false); x.succ(y); } } x = nodePath[i - 1]; x.black(false); y.black(true); x.left = y.right; y.right = x; if (i < 2) tree = y; else { if (dirPath[i - 2]) nodePath[i - 2].right = y; else nodePath[i - 2].left = y; } if (y.succ()) { y.succ(false); x.pred(y); } break; } } else { Entry y = nodePath[i - 1].left; if (! nodePath[i - 1].pred() && ! y.black()) { nodePath[i].black(true); y.black(true); nodePath[i - 1].black(false); i -= 2; } else { Entry x; if (dirPath[i]) y = nodePath[i]; else { x = nodePath[i]; y = x.left; x.left = y.right; y.right = x; nodePath[i - 1].right = y; if (y.succ()) { y.succ(false); x.pred(y); } } x = nodePath[i - 1]; x.black(false); y.black(true); x.right = y.left; y.left = x; if (i < 2) tree = y; else { if (dirPath[i - 2]) nodePath[i - 2].right = y; else nodePath[i - 2].left = y; } if (y.pred()){ y.pred(false); x.succ(y); } break; } } } } tree.black(true); // We clean up the node path, or we could have stale references later. while(maxDepth-- != 0) nodePath[maxDepth] = null; if (ASSERTS) { checkNodePath(); checkTree(tree, 0, -1); } return e; } /* After execution of this method, {@link #modified} is true iff an entry has been deleted. */ @Override public long remove(final int k) { modified = false; if (tree == null) return defRetValue; Entry p = tree; int cmp; int i = 0; final int kk = k; while(true) { if ((cmp = compare(kk, p.key)) == 0) break; dirPath[i] = cmp > 0; nodePath[i] = p; if (dirPath[i++]) { if ((p = p.right()) == null) { // We clean up the node path, or we could have stale references later. while(i-- != 0) nodePath[i] = null; return defRetValue; } } else { if ((p = p.left()) == null) { // We clean up the node path, or we could have stale references later. while(i-- != 0) nodePath[i] = null; return defRetValue; } } } if (p.left == null) firstEntry = p.next(); if (p.right == null) lastEntry = p.prev(); if (p.succ()) { if (p.pred()) { if (i == 0) tree = p.left; else { if (dirPath[i - 1]) nodePath[i - 1].succ(p.right); else nodePath[i - 1].pred(p.left); } } else { p.prev().right = p.right; if (i == 0) tree = p.left; else { if (dirPath[i - 1]) nodePath[i - 1].right = p.left; else nodePath[i - 1].left = p.left; } } } else { boolean color; Entry r = p.right; if (r.pred()) { r.left = p.left; r.pred(p.pred()); if (! r.pred()) r.prev().right = r; if (i == 0) tree = r; else { if (dirPath[i - 1]) nodePath[i - 1].right = r; else nodePath[i - 1].left = r; } color = r.black(); r.black(p.black()); p.black(color); dirPath[i] = true; nodePath[i++] = r; } else { Entry s; int j = i++; while(true) { dirPath[i] = false; nodePath[i++] = r; s = r.left; if (s.pred()) break; r = s; } dirPath[j] = true; nodePath[j] = s; if (s.succ()) r.pred(s); else r.left = s.right; s.left = p.left; if (! p.pred()) { p.prev().right = s; s.pred(false); } s.right(p.right); color = s.black(); s.black(p.black()); p.black(color); if (j == 0) tree = s; else { if (dirPath[j - 1]) nodePath[j - 1].right = s; else nodePath[j - 1].left = s; } } } int maxDepth = i; if (p.black()) { for(; i > 0; i--) { if (dirPath[i - 1] && ! nodePath[i - 1].succ() || ! dirPath[i - 1] && ! nodePath[i - 1].pred()) { Entry x = dirPath[i - 1] ? nodePath[i - 1].right : nodePath[i - 1].left; if (! x.black()) { x.black(true); break; } } if (! dirPath[i - 1]) { Entry w = nodePath[i - 1].right; if (! w.black()) { w.black(true); nodePath[i - 1].black(false); nodePath[i - 1].right = w.left; w.left = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } nodePath[i] = nodePath[i - 1]; dirPath[i] = false; nodePath[i - 1] = w; if (maxDepth == i++) maxDepth++; w = nodePath[i - 1].right; } if ((w.pred() || w.left.black()) && (w.succ() || w.right.black())) { w.black(false); } else { if (w.succ() || w.right.black()) { Entry y = w.left; y.black (true); w.black(false); w.left = y.right; y.right = w; w = nodePath[i - 1].right = y; if (w.succ()) { w.succ(false); w.right.pred(w); } } w.black(nodePath[i - 1].black()); nodePath[i - 1].black(true); w.right.black(true); nodePath[i - 1].right = w.left; w.left = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } if (w.pred()) { w.pred(false); nodePath[i - 1].succ(w); } break; } } else { Entry w = nodePath[i - 1].left; if (! w.black()) { w.black (true); nodePath[i - 1].black(false); nodePath[i - 1].left = w.right; w.right = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } nodePath[i] = nodePath[i - 1]; dirPath[i] = true; nodePath[i - 1] = w; if (maxDepth == i++) maxDepth++; w = nodePath[i - 1].left; } if ((w.pred() || w.left.black()) && (w.succ() || w.right.black())) { w.black(false); } else { if (w.pred() || w.left.black()) { Entry y = w.right; y.black(true); w.black (false); w.right = y.left; y.left = w; w = nodePath[i - 1].left = y; if (w.pred()) { w.pred(false); w.left.succ(w); } } w.black(nodePath[i - 1].black()); nodePath[i - 1].black(true); w.left.black(true); nodePath[i - 1].left = w.right; w.right = nodePath[i - 1]; if (i < 2) tree = w; else { if (dirPath[i - 2]) nodePath[i - 2].right = w; else nodePath[i - 2].left = w; } if (w.succ()) { w.succ(false); nodePath[i - 1].pred(w); } break; } } } if (tree != null) tree.black(true); } modified = true; count--; // We clean up the node path, or we could have stale references later. while(maxDepth-- != 0) nodePath[maxDepth] = null; if (ASSERTS) { checkNodePath(); checkTree(tree, 0, -1); } return p.value; } @Override public boolean containsValue(final long v) { final ValueIterator i = new ValueIterator(); long ev; int j = count; while(j-- != 0) { ev = i.nextLong(); if (( (ev) == (v) )) return true; } return false; } @Override public void clear() { count = 0; tree = null; entries = null; values = null; keys = null; firstEntry = lastEntry = null; } /** This class represent an entry in a tree map. * *

We use the only "metadata", i.e., {@link Entry#info}, to store * information about color, predecessor status and successor status. * *

Note that since the class is recursive, it can be * considered equivalently a tree. */ private static final class Entry extends AbstractInt2LongMap.BasicEntry implements Cloneable { /** The the bit in this mask is true, the node is black. */ private final static int BLACK_MASK = 1; /** If the bit in this mask is true, {@link #right} points to a successor. */ private final static int SUCC_MASK = 1 << 31; /** If the bit in this mask is true, {@link #left} points to a predecessor. */ private final static int PRED_MASK = 1 << 30; /** The pointers to the left and right subtrees. */ Entry left, right; /** This integers holds different information in different bits (see {@link #SUCC_MASK} and {@link #PRED_MASK}. */ int info; Entry() { super((0), (0)); } /** Creates a new entry with the given key and value. * * @param k a key. * @param v a value. */ Entry(final int k, final long v) { super(k, v); info = SUCC_MASK | PRED_MASK; } /** Returns the left subtree. * * @return the left subtree ({@code null} if the left * subtree is empty). */ Entry left() { return (info & PRED_MASK) != 0 ? null : left; } /** Returns the right subtree. * * @return the right subtree ({@code null} if the right * subtree is empty). */ Entry right() { return (info & SUCC_MASK) != 0 ? null : right; } /** Checks whether the left pointer is really a predecessor. * @return true if the left pointer is a predecessor. */ boolean pred() { return (info & PRED_MASK) != 0; } /** Checks whether the right pointer is really a successor. * @return true if the right pointer is a successor. */ boolean succ() { return (info & SUCC_MASK) != 0; } /** Sets whether the left pointer is really a predecessor. * @param pred if true then the left pointer will be considered a predecessor. */ void pred(final boolean pred) { if (pred) info |= PRED_MASK; else info &= ~PRED_MASK; } /** Sets whether the right pointer is really a successor. * @param succ if true then the right pointer will be considered a successor. */ void succ(final boolean succ) { if (succ) info |= SUCC_MASK; else info &= ~SUCC_MASK; } /** Sets the left pointer to a predecessor. * @param pred the predecessr. */ void pred(final Entry pred) { info |= PRED_MASK; left = pred; } /** Sets the right pointer to a successor. * @param succ the successor. */ void succ(final Entry succ) { info |= SUCC_MASK; right = succ; } /** Sets the left pointer to the given subtree. * @param left the new left subtree. */ void left(final Entry left) { info &= ~PRED_MASK; this.left = left; } /** Sets the right pointer to the given subtree. * @param right the new right subtree. */ void right(final Entry right) { info &= ~SUCC_MASK; this.right = right; } /** Returns whether this node is black. * @return true iff this node is black. */ boolean black() { return (info & BLACK_MASK) != 0; } /** Sets whether this node is black. * @param black if true, then this node becomes black; otherwise, it becomes red.. */ void black(final boolean black) { if (black) info |= BLACK_MASK; else info &= ~BLACK_MASK; } /** Computes the next entry in the set order. * * @return the next entry ({@code null}) if this is the last entry). */ Entry next() { Entry next = this.right; if ((info & SUCC_MASK) == 0) while ((next.info & PRED_MASK) == 0) next = next.left; return next; } /** Computes the previous entry in the set order. * * @return the previous entry ({@code null}) if this is the first entry). */ Entry prev() { Entry prev = this.left; if ((info & PRED_MASK) == 0) while ((prev.info & SUCC_MASK) == 0) prev = prev.right; return prev; } @Override public long setValue(final long value) { final long oldValue = this.value; this.value = value; return oldValue; } @Override public Entry clone() { Entry c; try { c = (Entry )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key; c.value = value; c.info = info; return c; } @Override @SuppressWarnings("unchecked") public boolean equals(final Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry )o; return ( (key) == (((e.getKey()).intValue())) ) && ( (value) == (((e.getValue()).longValue())) ); } @Override public int hashCode() { return (key) ^ it.unimi.dsi.fastutil.HashCommon.long2int(value); } @Override public String toString() { return key + "=>" + value; } /* public void prettyPrint() { prettyPrint(0); } public void prettyPrint(int level) { if (pred()) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("pred: " + left); } else if (left != null) left.prettyPrint(level +1); for (int i = 0; i < level; i++) System.err.print(" "); System.err.println(key + "=" + value + " (" + balance() + ")"); if (succ()) { for (int i = 0; i < level; i++) System.err.print(" "); System.err.println("succ: " + right); } else if (right != null) right.prettyPrint(level + 1); }*/ } /* public void prettyPrint() { System.err.println("size: " + count); if (tree != null) tree.prettyPrint(); }*/ @Override public boolean containsKey(final int k) { return findKey( k) != null; } @Override public int size() { return count; } @Override public boolean isEmpty() { return count == 0; } @Override public long get(final int k) { final Entry e = findKey( k); return e == null ? defRetValue : e.value; } @Override public int firstIntKey() { if (tree == null) throw new NoSuchElementException(); return firstEntry.key; } @Override public int lastIntKey() { if (tree == null) throw new NoSuchElementException(); return lastEntry.key; } /** An abstract iterator on the whole range. * *

This class can iterate in both directions on a threaded tree. */ private class TreeIterator { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or {@code null} if no previous entry exists). */ Entry prev; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or {@code null} if no next entry exists). */ Entry next; /** The last entry that was returned (or {@code null} if we did not iterate or used {@link #remove()}). */ Entry curr; /** The current index (in the sense of a {@link java.util.ListIterator}). Note that this value is not meaningful when this {@link TreeIterator} has been created using the nonempty constructor.*/ int index = 0; TreeIterator() { next = firstEntry; } TreeIterator(final int k) { if ((next = locateKey(k)) != null) { if (compare(next.key, k) <= 0) { prev = next; next = next.next(); } else prev = next.prev(); } } public boolean hasNext() { return next != null; } public boolean hasPrevious() { return prev != null; } void updateNext() { next = next.next(); } Entry nextEntry() { if (! hasNext()) throw new NoSuchElementException(); curr = prev = next; index++; updateNext(); return curr; } void updatePrevious() { prev = prev.prev(); } Entry previousEntry() { if (! hasPrevious()) throw new NoSuchElementException(); curr = next = prev; index--; updatePrevious(); return curr; } public int nextIndex() { return index; } public int previousIndex() { return index - 1; } public void remove() { if (curr == null) throw new IllegalStateException(); /* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ if (curr == prev) index--; next = prev = curr; updatePrevious(); updateNext(); Int2LongRBTreeMap.this.remove(curr.key); curr = null; } public int skip(final int n) { int i = n; while(i-- != 0 && hasNext()) nextEntry(); return n - i - 1; } public int back(final int n) { int i = n; while(i-- != 0 && hasPrevious()) previousEntry(); return n - i - 1; } } /** An iterator on the whole range. * *

This class can iterate in both directions on a threaded tree. */ private class EntryIterator extends TreeIterator implements ObjectListIterator { EntryIterator() {} EntryIterator(final int k) { super(k); } @Override public Int2LongMap.Entry next() { return nextEntry(); } @Override public Int2LongMap.Entry previous() { return previousEntry(); } @Override public void set(Int2LongMap.Entry ok) { throw new UnsupportedOperationException(); } @Override public void add(Int2LongMap.Entry ok) { throw new UnsupportedOperationException(); } } @Override public ObjectSortedSet int2LongEntrySet() { if (entries == null) entries = new AbstractObjectSortedSet() { final Comparator comparator = new Comparator () { public int compare(final Int2LongMap.Entry x, Int2LongMap.Entry y) { return Int2LongRBTreeMap.this.actualComparator.compare(x.getIntKey(), y.getIntKey()); } }; @Override public Comparator comparator() { return comparator; } @Override public ObjectBidirectionalIterator iterator() { return new EntryIterator(); } @Override public ObjectBidirectionalIterator iterator(final Int2LongMap.Entry from) { return new EntryIterator(from.getIntKey()); } @Override public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null || ! (e.getKey() instanceof Integer)) return false; if (e.getValue() == null || ! (e.getValue() instanceof Long)) return false; final Entry f = findKey(((((Integer)( e.getKey())).intValue()))); return e.equals(f); } @Override public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null || ! (e.getKey() instanceof Integer)) return false; if (e.getValue() == null || ! (e.getValue() instanceof Long)) return false; final Entry f = findKey(((((Integer)( e.getKey())).intValue()))); if (f != null) Int2LongRBTreeMap.this.remove(f.key); return f != null; } @Override public int size() { return count; } @Override public void clear() { Int2LongRBTreeMap.this.clear(); } @Override public Int2LongMap.Entry first() { return firstEntry; } @Override public Int2LongMap.Entry last() { return lastEntry; } @Override public ObjectSortedSet subSet(Int2LongMap.Entry from, Int2LongMap.Entry to) { return subMap(from.getIntKey(), to.getIntKey()).int2LongEntrySet(); } @Override public ObjectSortedSet headSet(Int2LongMap.Entry to) { return headMap(to.getIntKey()).int2LongEntrySet(); } @Override public ObjectSortedSet tailSet(Int2LongMap.Entry from) { return tailMap(from.getIntKey()).int2LongEntrySet(); } }; return entries; } /** An iterator on the whole range of keys. * *

This class can iterate in both directions on the keys of a threaded tree. We * simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly * their type-specific counterparts) so that they return keys instead of entries. */ private final class KeyIterator extends TreeIterator implements IntListIterator { public KeyIterator() {} public KeyIterator(final int k) { super(k); } @Override public int nextInt() { return nextEntry().key; } @Override public int previousInt() { return previousEntry().key; } @Override public void set(int k) { throw new UnsupportedOperationException(); } @Override public void add(int k) { throw new UnsupportedOperationException(); } @Deprecated @Override public Integer next() { return (Integer.valueOf(nextEntry().key)); } @Deprecated @Override public Integer previous() { return (Integer.valueOf(previousEntry().key)); } @Deprecated @Override public void set(Integer ok) { throw new UnsupportedOperationException(); } @Deprecated @Override public void add(Integer ok) { throw new UnsupportedOperationException(); } }; /** A keyset implementation using a more direct implementation for iterators. */ private class KeySet extends AbstractInt2LongSortedMap .KeySet { public IntBidirectionalIterator iterator() { return new KeyIterator(); } public IntBidirectionalIterator iterator(final int from) { return new KeyIterator(from); } } /** Returns a type-specific sorted set view of the keys contained in this map. * *

In addition to the semantics of {@link java.util.Map#keySet()}, you can * safely cast the set returned by this call to a type-specific sorted * set interface. * * @return a type-specific sorted set view of the keys contained in this map. */ @Override public IntSortedSet keySet() { if (keys == null) keys = new KeySet(); return keys; } /** An iterator on the whole range of values. * *

This class can iterate in both directions on the values of a threaded tree. We * simply override the {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly * their type-specific counterparts) so that they return values instead of entries. */ private final class ValueIterator extends TreeIterator implements LongListIterator { @Override public long nextLong() { return nextEntry().value; } @Override public long previousLong() { return previousEntry().value; } @Override public void set(long v) { throw new UnsupportedOperationException(); } @Override public void add(long v) { throw new UnsupportedOperationException(); } @Deprecated @Override public Long next() { return (Long.valueOf(nextEntry().value)); } @Deprecated @Override public Long previous() { return (Long.valueOf(previousEntry().value)); } @Deprecated @Override public void set(Long ok) { throw new UnsupportedOperationException(); } @Deprecated @Override public void add(Long ok) { throw new UnsupportedOperationException(); } }; /** Returns a type-specific collection view of the values contained in this map. * *

In addition to the semantics of {@link java.util.Map#values()}, you can * safely cast the collection returned by this call to a type-specific collection * interface. * * @return a type-specific collection view of the values contained in this map. */ @Override public LongCollection values() { if (values == null) values = new AbstractLongCollection () { @Override public LongIterator iterator() { return new ValueIterator(); } @Override public boolean contains(final long k) { return containsValue(k); } @Override public int size() { return count; } @Override public void clear() { Int2LongRBTreeMap.this.clear(); } }; return values; } @Override public IntComparator comparator() { return actualComparator; } @Override public Int2LongSortedMap headMap(int to) { return new Submap((0), true, to, false); } @Override public Int2LongSortedMap tailMap(int from) { return new Submap(from, false, (0), true); } @Override public Int2LongSortedMap subMap(int from, int to) { return new Submap(from, false, to, false); } /** A submap with given range. * *

This class represents a submap. One has to specify the left/right * limits (which can be set to -∞ or ∞). Since the submap is a * view on the map, at a given moment it could happen that the limits of * the range are not any longer in the main map. Thus, things such as * {@link java.util.SortedMap#firstKey()} or {@link java.util.Collection#size()} must be always computed * on-the-fly. */ private final class Submap extends AbstractInt2LongSortedMap implements java.io.Serializable { private static final long serialVersionUID = -7046029254386353129L; /** The start of the submap range, unless {@link #bottom} is true. */ int from; /** The end of the submap range, unless {@link #top} is true. */ int to; /** If true, the submap range starts from -∞. */ boolean bottom; /** If true, the submap range goes to ∞. */ boolean top; /** Cached set of entries. */ protected transient ObjectSortedSet entries; /** Cached set of keys. */ protected transient IntSortedSet keys; /** Cached collection of values. */ protected transient LongCollection values; /** Creates a new submap with given key range. * * @param from the start of the submap range. * @param bottom if true, the first parameter is ignored and the range starts from -∞. * @param to the end of the submap range. * @param top if true, the third parameter is ignored and the range goes to ∞. */ public Submap(final int from, final boolean bottom, final int to, final boolean top) { if (! bottom && ! top && Int2LongRBTreeMap.this.compare(from, to) > 0) throw new IllegalArgumentException("Start key (" + from + ") is larger than end key (" + to + ")"); this.from = from; this.bottom = bottom; this.to = to; this.top = top; this.defRetValue = Int2LongRBTreeMap.this.defRetValue; } @Override public void clear() { final SubmapIterator i = new SubmapIterator(); while(i.hasNext()) { i.nextEntry(); i.remove(); } } /** Checks whether a key is in the submap range. * @param k a key. * @return true if is the key is in the submap range. */ final boolean in(final int k) { return (bottom || Int2LongRBTreeMap.this.compare(k, from) >= 0) && (top || Int2LongRBTreeMap.this.compare(k, to) < 0); } @Override public ObjectSortedSet int2LongEntrySet() { if (entries == null) entries = new AbstractObjectSortedSet() { @Override public ObjectBidirectionalIterator iterator() { return new SubmapEntryIterator(); } @Override public ObjectBidirectionalIterator iterator(final Int2LongMap.Entry from) { return new SubmapEntryIterator(from.getIntKey()); } @Override public Comparator comparator() { return Int2LongRBTreeMap.this.int2LongEntrySet().comparator(); } @Override public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null || ! (e.getKey() instanceof Integer)) return false; if (e.getValue() == null || ! (e.getValue() instanceof Long)) return false; final Int2LongRBTreeMap.Entry f = findKey(((((Integer)( e.getKey())).intValue()))); return f != null && in(f.key) && e.equals(f); } @Override public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) return false; final Map.Entry e = (Map.Entry)o; if (e.getKey() == null || ! (e.getKey() instanceof Integer)) return false; if (e.getValue() == null || ! (e.getValue() instanceof Long)) return false; final Int2LongRBTreeMap.Entry f = findKey(((((Integer)( e.getKey())).intValue()))); if (f != null && in(f.key)) Submap.this.remove(f.key); return f != null; } @Override public int size() { int c = 0; for(Iterator i = iterator(); i.hasNext(); i.next()) c++; return c; } @Override public boolean isEmpty() { return ! new SubmapIterator().hasNext(); } @Override public void clear() { Submap.this.clear(); } @Override public Int2LongMap.Entry first() { return firstEntry(); } @Override public Int2LongMap.Entry last() { return lastEntry(); } @Override public ObjectSortedSet subSet(Int2LongMap.Entry from, Int2LongMap.Entry to) { return subMap(from.getIntKey(), to.getIntKey()).int2LongEntrySet(); } @Override public ObjectSortedSet headSet(Int2LongMap.Entry to) { return headMap(to.getIntKey()).int2LongEntrySet(); } @Override public ObjectSortedSet tailSet(Int2LongMap.Entry from) { return tailMap(from.getIntKey()).int2LongEntrySet(); } }; return entries; } private class KeySet extends AbstractInt2LongSortedMap .KeySet { public IntBidirectionalIterator iterator() { return new SubmapKeyIterator(); } public IntBidirectionalIterator iterator(final int from) { return new SubmapKeyIterator(from); } } @Override public IntSortedSet keySet() { if (keys == null) keys = new KeySet(); return keys; } @Override public LongCollection values() { if (values == null) values = new AbstractLongCollection () { public LongIterator iterator() { return new SubmapValueIterator(); } public boolean contains(final long k) { return containsValue(k); } public int size() { return Submap.this.size(); } public void clear() { Submap.this.clear(); } }; return values; } @Override public boolean containsKey(final int k) { return in( k) && Int2LongRBTreeMap.this.containsKey(k); } @Override public boolean containsValue(final long v) { final SubmapIterator i = new SubmapIterator(); long ev; while(i.hasNext()) { ev = i.nextEntry().value; if (( (ev) == (v) )) return true; } return false; } @Override public long get(final int k) { final Int2LongRBTreeMap.Entry e; final int kk = k; return in(kk) && (e = findKey(kk)) != null ? e.value : this.defRetValue; } @Override public long put(final int k, final long v) { modified = false; if (! in(k)) throw new IllegalArgumentException("Key (" + k + ") out of range [" + (bottom ? "-" : String.valueOf(from)) + ", " + (top ? "-" : String.valueOf(to)) + ")"); final long oldValue = Int2LongRBTreeMap.this.put(k, v); return modified ? this.defRetValue : oldValue; } @Override public long remove(final int k) { modified = false; if (! in( k)) return this.defRetValue; final long oldValue = Int2LongRBTreeMap.this.remove(k); return modified ? oldValue : this.defRetValue; } @Override public int size() { final SubmapIterator i = new SubmapIterator(); int n = 0; while(i.hasNext()) { n++; i.nextEntry(); } return n; } @Override public boolean isEmpty() { return ! new SubmapIterator().hasNext(); } @Override public IntComparator comparator() { return actualComparator; } @Override public Int2LongSortedMap headMap(final int to) { if (top) return new Submap(from, bottom, to, false); return compare(to, this.to) < 0 ? new Submap(from, bottom, to, false) : this; } @Override public Int2LongSortedMap tailMap(final int from) { if (bottom) return new Submap(from, false, to, top); return compare(from, this.from) > 0 ? new Submap(from, false, to, top) : this; } @Override public Int2LongSortedMap subMap(int from, int to) { if (top && bottom) return new Submap(from, false, to, false); if (! top) to = compare(to, this.to) < 0 ? to : this.to; if (! bottom) from = compare(from, this.from) > 0 ? from : this.from; if (! top && ! bottom && from == this.from && to == this.to) return this; return new Submap(from, false, to, false); } /** Locates the first entry. * * @return the first entry of this submap, or {@code null} if the submap is empty. */ public Int2LongRBTreeMap.Entry firstEntry() { if (tree == null) return null; // If this submap goes to -infinity, we return the main map first entry; otherwise, we locate the start of the map. Int2LongRBTreeMap.Entry e; if (bottom) e = firstEntry; else { e = locateKey(from); // If we find either the start or something greater we're OK. if (compare(e.key, from) < 0) e = e.next(); } // Finally, if this submap doesn't go to infinity, we check that the resulting key isn't greater than the end. if (e == null || ! top && compare(e.key, to) >= 0) return null; return e; } /** Locates the last entry. * * @return the last entry of this submap, or {@code null} if the submap is empty. */ public Int2LongRBTreeMap.Entry lastEntry() { if (tree == null) return null; // If this submap goes to infinity, we return the main map last entry; otherwise, we locate the end of the map. Int2LongRBTreeMap.Entry e; if (top) e = lastEntry; else { e = locateKey(to); // If we find something smaller than the end we're OK. if (compare(e.key, to) >= 0) e = e.prev(); } // Finally, if this submap doesn't go to -infinity, we check that the resulting key isn't smaller than the start. if (e == null || ! bottom && compare(e.key, from) < 0) return null; return e; } @Override public int firstIntKey() { Int2LongRBTreeMap.Entry e = firstEntry(); if (e == null) throw new NoSuchElementException(); return e.key; } @Override public int lastIntKey() { Int2LongRBTreeMap.Entry e = lastEntry(); if (e == null) throw new NoSuchElementException(); return e.key; } /** An iterator for subranges. * *

This class inherits from {@link TreeIterator}, but overrides the methods that * update the pointer after a {@link java.util.ListIterator#next()} or {@link java.util.ListIterator#previous()}. If we would * move out of the range of the submap we just overwrite the next or previous * entry with {@code null}. */ private class SubmapIterator extends TreeIterator { SubmapIterator() { next = firstEntry(); } SubmapIterator(final int k) { this(); if (next != null) { if (! bottom && compare(k, next.key) < 0) prev = null; else if (! top && compare(k, (prev = lastEntry()).key) >= 0) next = null; else { next = locateKey(k); if (compare(next.key, k) <= 0) { prev = next; next = next.next(); } else prev = next.prev(); } } } void updatePrevious() { prev = prev.prev(); if (! bottom && prev != null && Int2LongRBTreeMap.this.compare(prev.key, from) < 0) prev = null; } void updateNext() { next = next.next(); if (! top && next != null && Int2LongRBTreeMap.this.compare(next.key, to) >= 0) next = null; } } private class SubmapEntryIterator extends SubmapIterator implements ObjectListIterator { SubmapEntryIterator() {} SubmapEntryIterator(final int k) { super(k); } @Override public Int2LongMap.Entry next() { return nextEntry(); } @Override public Int2LongMap.Entry previous() { return previousEntry(); } @Override public void set(Int2LongMap.Entry ok) { throw new UnsupportedOperationException(); } @Override public void add(Int2LongMap.Entry ok) { throw new UnsupportedOperationException(); } } /** An iterator on a subrange of keys. * *

This class can iterate in both directions on a subrange of the * keys of a threaded tree. We simply override the {@link * java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly their * type-specific counterparts) so that they return keys instead of * entries. */ private final class SubmapKeyIterator extends SubmapIterator implements IntListIterator { public SubmapKeyIterator() { super(); } public SubmapKeyIterator(int from) { super(from); } @Override public int nextInt() { return nextEntry().key; } @Override public int previousInt() { return previousEntry().key; } @Override public void set(int k) { throw new UnsupportedOperationException(); } @Override public void add(int k) { throw new UnsupportedOperationException(); } @Deprecated @Override public Integer next() { return (Integer.valueOf(nextEntry().key)); } @Deprecated @Override public Integer previous() { return (Integer.valueOf(previousEntry().key)); } @Deprecated @Override public void set(Integer ok) { throw new UnsupportedOperationException(); } @Deprecated @Override public void add(Integer ok) { throw new UnsupportedOperationException(); } }; /** An iterator on a subrange of values. * *

This class can iterate in both directions on the values of a * subrange of the keys of a threaded tree. We simply override the * {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} methods (and possibly their * type-specific counterparts) so that they return values instead of * entries. */ private final class SubmapValueIterator extends SubmapIterator implements LongListIterator { @Override public long nextLong() { return nextEntry().value; } @Override public long previousLong() { return previousEntry().value; } @Override public void set(long v) { throw new UnsupportedOperationException(); } @Override public void add(long v) { throw new UnsupportedOperationException(); } @Deprecated @Override public Long next() { return (Long.valueOf(nextEntry().value)); } @Deprecated @Override public Long previous() { return (Long.valueOf(previousEntry().value)); } @Deprecated @Override public void set(Long ok) { throw new UnsupportedOperationException(); } @Deprecated @Override public void add(Long ok) { throw new UnsupportedOperationException(); } }; } /** Returns a deep copy of this tree map. * *

This method performs a deep copy of this tree map; the data stored in the * set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this tree map. */ @Override public Int2LongRBTreeMap clone() { Int2LongRBTreeMap c; try { c = (Int2LongRBTreeMap )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.keys = null; c.values = null; c.entries = null; c.allocatePaths(); if (count != 0) { // Also this apparently unfathomable code is derived from GNU libavl. Entry e, p, q, rp = new Entry (), rq = new Entry (); p = rp; rp.left(tree); q = rq; rq.pred(null); while(true) { if (! p.pred()) { e = p.left.clone(); e.pred(q.left); e.succ(q); q.left(e); p = p.left; q = q.left; } else { while(p.succ()) { p = p.right; if (p == null) { q.right = null; c.tree = rq.left; c.firstEntry = c.tree; while(c.firstEntry.left != null) c.firstEntry = c.firstEntry.left; c.lastEntry = c.tree; while(c.lastEntry.right != null) c.lastEntry = c.lastEntry.right; return c; } q = q.right; } p = p.right; q = q.right; } if (! p.succ()) { e = p.right.clone(); e.succ(q.right); e.pred(q); q.right(e); } } } return c; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { int n = count; EntryIterator i = new EntryIterator(); Entry e; s.defaultWriteObject(); while(n-- != 0) { e = i.nextEntry(); s.writeInt(e.key); s.writeLong(e.value); } } /** Reads the given number of entries from the input stream, returning the corresponding tree. * * @param s the input stream. * @param n the (positive) number of entries to read. * @param pred the entry containing the key that preceeds the first key in the tree. * @param succ the entry containing the key that follows the last key in the tree. */ private Entry readTree(final java.io.ObjectInputStream s, final int n, final Entry pred, final Entry succ) throws java.io.IOException, ClassNotFoundException { if (n == 1) { final Entry top = new Entry ( s.readInt(), s.readLong()); top.pred(pred); top.succ(succ); top.black(true); return top; } if (n == 2) { /* We handle separately this case so that recursion will *always* be on nonempty subtrees. */ final Entry top = new Entry ( s.readInt(), s.readLong()); top.black(true); top.right(new Entry ( s.readInt(), s.readLong())); top.right.pred(top); top.pred(pred); top.right.succ(succ); return top; } // The right subtree is the largest one. final int rightN = n / 2, leftN = n - rightN - 1; final Entry top = new Entry (); top.left(readTree(s, leftN, pred, top)); top.key = s.readInt(); top.value = s.readLong(); top.black(true); top.right(readTree(s, rightN, top, succ)); if (n + 2 == ((n + 2) & -(n + 2))) top.right.black(false); // Quick test for determining whether n + 2 is a power of 2. return top; } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); /* The storedComparator is now correctly set, but we must restore on-the-fly the actualComparator. */ setActualComparator(); allocatePaths(); if (count != 0) { tree = readTree(s, count, null, null); Entry e; e = tree; while(e.left() != null) e = e.left(); firstEntry = e; e = tree; while(e.right() != null) e = e.right(); lastEntry = e; } if (ASSERTS) checkTree(tree, 0, -1); } private void checkNodePath() {} private static int checkTree(Entry e, int d, int D) { return 0; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy