All Downloads are FREE. Search and download functionalities are using the official Maven repository.

it.unimi.dsi.fastutil.ints.IntLinkedOpenHashSet Maven / Gradle / Ivy

The newest version!
/*
	* Copyright (C) 2002-2017 Sebastiano Vigna
	*
	* Licensed under the Apache License, Version 2.0 (the "License");
	* you may not use this file except in compliance with the License.
	* You may obtain a copy of the License at
	*
	*     http://www.apache.org/licenses/LICENSE-2.0
	*
	* Unless required by applicable law or agreed to in writing, software
	* distributed under the License is distributed on an "AS IS" BASIS,
	* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
	* See the License for the specific language governing permissions and
	* limitations under the License.
	*/
package it.unimi.dsi.fastutil.ints;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.HashCommon;
import static it.unimi.dsi.fastutil.HashCommon.arraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**  A type-specific linked hash set with with a fast, small-footprint implementation.
	*
	* 

Instances of this class use a hash table to represent a set. The table is * filled up to a specified load factor, and then doubled in size to * accommodate new entries. If the table is emptied below one fourth * of the load factor, it is halved in size. However, halving is * not performed when deleting entries from an iterator, as it would interfere * with the iteration process. * *

Note that {@link #clear()} does not modify the hash table size. * Rather, a family of {@linkplain #trim() trimming * methods} lets you control the size of the table; this is particularly useful * if you reuse instances of this class. * *

Iterators generated by this set will enumerate elements in the same order in which they * have been added to the set (addition of elements already present * in the set does not change the iteration order). Note that this order has nothing in common with the natural * order of the keys. The order is kept by means of a doubly linked list, represented * via an array of longs parallel to the table. * *

This class implements the interface of a sorted set, so to allow easy * access of the iteration order: for instance, you can get the first element * in iteration order with {@code first()} without having to create an * iterator; however, this class partially violates the {@link java.util.SortedSet} * contract because all subset methods throw an exception and {@link * #comparator()} returns always {@code null}. * *

Additional methods, such as addAndMoveToFirst(), make it easy * to use instances of this class as a cache (e.g., with LRU policy). * *

The iterators provided by this class are type-specific {@linkplain * java.util.ListIterator list iterators}, and can be started at any * element which is in the set (if the provided element * is not in the set, a {@link NoSuchElementException} exception will be thrown). * If, however, the provided element is not the first or last element in the * set, the first access to the list index will require linear time, as in the worst case * the entire set must be scanned in iteration order to retrieve the positional * index of the starting element. If you use just the methods of a type-specific {@link it.unimi.dsi.fastutil.BidirectionalIterator}, * however, all operations will be performed in constant time. * * @see Hash * @see HashCommon */ public class IntLinkedOpenHashSet extends AbstractIntSortedSet implements java.io.Serializable, Cloneable, Hash { private static final long serialVersionUID = 0L; private static final boolean ASSERTS = false; /** The array of keys. */ protected transient int[] key; /** The mask for wrapping a position counter. */ protected transient int mask; /** Whether this set contains the null key. */ protected transient boolean containsNull; /** The index of the first entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int first = -1; /** The index of the last entry in iteration order. It is valid iff {@link #size} is nonzero; otherwise, it contains -1. */ protected transient int last = -1; /** For each entry, the next and the previous entry in iteration order, * stored as ((prev & 0xFFFFFFFFL) << 32) | (next & 0xFFFFFFFFL). * The first entry contains predecessor -1, and the last entry * contains successor -1. */ protected transient long[] link; /** The current table size. Note that an additional element is allocated for storing the null key. */ protected transient int n; /** Threshold after which we rehash. It must be the table size times {@link #f}. */ protected transient int maxFill; /** Number of entries in the set (including the null key, if present). */ protected int size; /** The acceptable load factor. */ protected final float f; /** Creates a new hash set. * *

The actual table size will be the least power of two greater than expected/f. * * @param expected the expected number of elements in the hash set. * @param f the load factor. */ public IntLinkedOpenHashSet(final int expected, final float f) { if (f <= 0 || f > 1) throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than or equal to 1"); if (expected < 0) throw new IllegalArgumentException("The expected number of elements must be nonnegative"); this.f = f; n = arraySize(expected, f); mask = n - 1; maxFill = maxFill(n, f); key = new int[n + 1]; link = new long[n + 1]; } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash set. */ public IntLinkedOpenHashSet(final int expected) { this(expected, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set with initial expected {@link Hash#DEFAULT_INITIAL_SIZE} elements * and {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public IntLinkedOpenHashSet() { this(DEFAULT_INITIAL_SIZE, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. * @param f the load factor. */ public IntLinkedOpenHashSet(final Collection c, final float f) { this(c.size(), f); addAll(c); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given collection. * * @param c a {@link Collection} to be copied into the new hash set. */ public IntLinkedOpenHashSet(final Collection c) { this(c, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. * @param f the load factor. */ public IntLinkedOpenHashSet(final IntCollection c, final float f) { this(c.size(), f); addAll(c); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given type-specific collection. * * @param c a type-specific collection to be copied into the new hash set. */ public IntLinkedOpenHashSet(final IntCollection c) { this(c, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. * @param f the load factor. */ public IntLinkedOpenHashSet(final IntIterator i, final float f) { this(DEFAULT_INITIAL_SIZE, f); while(i.hasNext()) add(i.nextInt()); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by a type-specific iterator. * * @param i a type-specific iterator whose elements will fill the set. */ public IntLinkedOpenHashSet(final IntIterator i) { this(i, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. * @param f the load factor. */ public IntLinkedOpenHashSet(final Iterator i, final float f) { this(IntIterators.asIntIterator(i), f); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor using elements provided by an iterator. * * @param i an iterator whose elements will fill the set. */ public IntLinkedOpenHashSet(final Iterator i) { this(IntIterators.asIntIterator(i)); } /** Creates a new hash set and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. * @param f the load factor. */ public IntLinkedOpenHashSet(final int[] a, final int offset, final int length, final float f) { this(length < 0 ? 0 : length, f); IntArrays.ensureOffsetLength(a, offset, length); for(int i = 0; i < length; i++) add(a[offset + i]); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor and fills it with the elements of a given array. * * @param a an array whose elements will be used to fill the set. * @param offset the first element to use. * @param length the number of elements to use. */ public IntLinkedOpenHashSet(final int[] a, final int offset, final int length) { this(a, offset, length, DEFAULT_LOAD_FACTOR); } /** Creates a new hash set copying the elements of an array. * * @param a an array to be copied into the new hash set. * @param f the load factor. */ public IntLinkedOpenHashSet(final int[] a, final float f) { this(a, 0, a.length, f); } /** Creates a new hash set with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying the elements of an array. * * @param a an array to be copied into the new hash set. */ public IntLinkedOpenHashSet(final int[] a) { this(a, DEFAULT_LOAD_FACTOR); } private int realSize() { return containsNull ? size - 1 : size; } private void ensureCapacity(final int capacity) { final int needed = arraySize(capacity, f); if (needed > n) rehash(needed); } private void tryCapacity(final long capacity) { final int needed = (int)Math.min(1 << 30, Math.max(2, HashCommon.nextPowerOfTwo((long)Math.ceil(capacity / f)))); if (needed > n) rehash(needed); } @Override public boolean addAll(IntCollection c) { if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() elements return super.addAll(c); } @Override public boolean addAll(Collection c) { // The resulting collection will be at least c.size() big if (f <= .5) ensureCapacity(c.size()); // The resulting collection will be sized for c.size() elements else tryCapacity(size() + c.size()); // The resulting collection will be tentatively sized for size() + c.size() elements return super.addAll(c); } @Override public boolean add(final int k) { int pos; if (( (k) == (0) )) { if (containsNull) return false; pos = n; containsNull = true; } else { int curr; final int[] key = this.key; // The starting point. if (! ( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) { if (( (curr) == (k) )) return false; while(! ( (curr = key[pos = (pos + 1) & mask]) == (0) )) if (( (curr) == (k) )) return false; } key[pos] = k; } if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { link[last] ^= ( ( link[last] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[pos] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = pos; } if (size++ >= maxFill) rehash(arraySize(size + 1, f)); if (ASSERTS) checkTable(); return true; } /** Shifts left entries with the specified hash code, starting at the specified position, * and empties the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys(int pos) { // Shift entries with the same hash. int last, slot; int curr; final int[] key = this.key; for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (( (curr = key[pos]) == (0) )) { key[last] = (0); return; } slot = ( it.unimi.dsi.fastutil.HashCommon.mix( (curr) ) ) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; fixPointers(pos, last); } } private boolean removeEntry(final int pos) { size--; fixPointers(pos); shiftKeys(pos); if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } private boolean removeNullEntry() { containsNull = false; key[n] = (0); size--; fixPointers(n); if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return true; } @Override public boolean remove(final int k) { if (( (k) == (0) )) { if (containsNull) return removeNullEntry(); return false; } int curr; final int[] key = this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return false; if (( (k) == (curr) )) return removeEntry(pos); while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return false; if (( (k) == (curr) )) return removeEntry(pos); } } @Override public boolean contains(final int k) { if (( (k) == (0) )) return containsNull; int curr; final int[] key = this.key; int pos; // The starting point. if (( (curr = key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) return false; if (( (k) == (curr) )) return true; while(true) { if (( (curr = key[pos = (pos + 1) & mask]) == (0) )) return false; if (( (k) == (curr) )) return true; } } /** Removes the first key in iteration order. * @return the first key. * @throws NoSuchElementException is this set is empty. */ public int removeFirstInt() { if (size == 0) throw new NoSuchElementException(); final int pos = first; // Abbreviated version of fixPointers(pos) first = (int) link[pos]; if (0 <= first) { // Special case of SET_PREV(link[first], -1) link[first] |= (-1 & 0xFFFFFFFFL) << 32; } final int k = key[pos]; size--; if (( (k) == (0) )) { containsNull = false; key[n] = (0); } else shiftKeys(pos); if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return k; } /** Removes the the last key in iteration order. * @return the last key. * @throws NoSuchElementException is this set is empty. */ public int removeLastInt() { if (size == 0) throw new NoSuchElementException(); final int pos = last; // Abbreviated version of fixPointers(pos) last = (int) ( link[pos] >>> 32 ); if (0 <= last) { // Special case of SET_NEXT(link[last], -1) link[last] |= -1 & 0xFFFFFFFFL; } final int k = key[pos]; size--; if (( (k) == (0) )) { containsNull = false; key[n] = (0); } else shiftKeys(pos); if (size < maxFill / 4 && n > DEFAULT_INITIAL_SIZE) rehash(n / 2); return k; } private void moveIndexToFirst(final int i) { if (size == 1 || first == i) return; if (last == i) { last = (int) ( link[i] >>> 32 ); // Special case of SET_NEXT(link[last], -1); link[last] |= -1 & 0xFFFFFFFFL; } else { final long linki = link[i]; final int prev = (int) ( linki >>> 32 ); final int next = (int) linki; link[prev] ^= ( ( link[prev] ^ ( linki & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[next] ^= ( ( link[next] ^ ( linki & 0xFFFFFFFF00000000L ) ) & 0xFFFFFFFF00000000L ); } link[first] ^= ( ( link[first] ^ ( ( i & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[i] = ( ( -1 & 0xFFFFFFFFL ) << 32 ) | ( first & 0xFFFFFFFFL ); first = i; } private void moveIndexToLast(final int i) { if (size == 1 || last == i) return; if (first == i) { first = (int) link[i]; // Special case of SET_PREV(link[first], -1); link[first] |= (-1 & 0xFFFFFFFFL) << 32; } else { final long linki = link[i]; final int prev = (int) ( linki >>> 32 ); final int next = (int) linki; link[prev] ^= ( ( link[prev] ^ ( linki & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[next] ^= ( ( link[next] ^ ( linki & 0xFFFFFFFF00000000L ) ) & 0xFFFFFFFF00000000L ); } link[last] ^= ( ( link[last] ^ ( i & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[i] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = i; } /** Adds a key to the set; if the key is already present, it is moved to the first position of the iteration order. * * @param k the key. * @return true if the key was not present. */ public boolean addAndMoveToFirst(final int k) { int pos; if (( (k) == (0) )) { if (containsNull) { moveIndexToFirst(n); return false; } containsNull = true; pos = n; } else { // The starting point. final int key[] = this.key; pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask; // There's always an unused entry. TODO while(! ( (key[pos]) == (0) )) { if (( (k) == (key[pos]) )) { moveIndexToFirst(pos); return false; } pos = (pos + 1) & mask; } } key[pos] = k; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { link[first] ^= ( ( link[first] ^ ( ( pos & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[pos] = ( ( -1 & 0xFFFFFFFFL ) << 32 ) | ( first & 0xFFFFFFFFL ); first = pos; } if (size++ >= maxFill) rehash(arraySize(size, f)); if (ASSERTS) checkTable(); return true; } /** Adds a key to the set; if the key is already present, it is moved to the last position of the iteration order. * * @param k the key. * @return true if the key was not present. */ public boolean addAndMoveToLast(final int k) { int pos; if (( (k) == (0) )) { if (containsNull) { moveIndexToLast(n); return false; } containsNull = true; pos = n; } else { // The starting point. final int key[] = this.key; pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask; // There's always an unused entry. while(! ( (key[pos]) == (0) )) { if (( (k) == (key[pos]) )) { moveIndexToLast(pos); return false; } pos = (pos + 1) & mask; } } key[pos] = k; if (size == 0) { first = last = pos; // Special case of SET_UPPER_LOWER(link[pos], -1, -1); link[pos] = -1L; } else { link[last] ^= ( ( link[last] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[pos] = ( ( last & 0xFFFFFFFFL ) << 32 ) | ( -1 & 0xFFFFFFFFL ); last = pos; } if (size++ >= maxFill) rehash(arraySize(size, f)); if (ASSERTS) checkTable(); return true; } /* Removes all elements from this set. * *

To increase object reuse, this method does not change the table size. * If you want to reduce the table size, you must use {@link #trim()}. * */ @Override public void clear() { if (size == 0) return; size = 0; containsNull = false; Arrays.fill(key, (0)); first = last = -1; } @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } /** A no-op for backward compatibility. * * @param growthFactor unused. * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public void growthFactor(int growthFactor) {} /** Gets the growth factor (2). * * @return the growth factor of this set, which is fixed (2). * @see #growthFactor(int) * @deprecated Since fastutil 6.1.0, hash tables are doubled when they are too full. */ @Deprecated public int growthFactor() { return 16; } /** Modifies the {@link #link} vector so that the given entry is removed. * This method will complete in constant time. * * @param i the index of an entry. */ protected void fixPointers(final int i) { if (size == 0) { first = last = -1; return; } if (first == i) { first = (int) link[i]; if (0 <= first) { // Special case of SET_PREV(link[first], -1) link[first] |= (-1 & 0xFFFFFFFFL) << 32; } return; } if (last == i) { last = (int) ( link[i] >>> 32 ); if (0 <= last) { // Special case of SET_NEXT(link[last], -1) link[last] |= -1 & 0xFFFFFFFFL; } return; } final long linki = link[i]; final int prev = (int) ( linki >>> 32 ); final int next = (int) linki; link[prev] ^= ( ( link[prev] ^ ( linki & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[next] ^= ( ( link[next] ^ ( linki & 0xFFFFFFFF00000000L ) ) & 0xFFFFFFFF00000000L ); } /** Modifies the {@link #link} vector for a shift from s to d. * This method will complete in constant time. * * @param s the source position. * @param d the destination position. */ protected void fixPointers(int s, int d) { if (size == 1) { first = last = d; // Special case of SET(link[d], -1, -1) link[d] = -1L; return; } if (first == s) { first = d; link[(int) link[s]] ^= ( ( link[(int) link[s]] ^ ( ( d & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[d] = link[s]; return; } if (last == s) { last = d; link[(int) ( link[s] >>> 32 )] ^= ( ( link[(int) ( link[s] >>> 32 )] ^ ( d & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[d] = link[s]; return; } final long links = link[s]; final int prev = (int) ( links >>> 32 ); final int next = (int) links; link[prev] ^= ( ( link[prev] ^ ( d & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[next] ^= ( ( link[next] ^ ( ( d & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); link[d] = links; } /** Returns the first element of this set in iteration order. * * @return the first element in iteration order. */ public int firstInt() { if (size == 0) throw new NoSuchElementException(); return key[first]; } /** Returns the last element of this set in iteration order. * * @return the last element in iteration order. */ public int lastInt() { if (size == 0) throw new NoSuchElementException(); return key[last]; } /** {@inheritDoc} *

This implementation just throws an {@link UnsupportedOperationException}.*/ @Override public IntSortedSet tailSet(int from) { throw new UnsupportedOperationException(); } /** {@inheritDoc} *

This implementation just throws an {@link UnsupportedOperationException}.*/ @Override public IntSortedSet headSet(int to) { throw new UnsupportedOperationException(); } /** {@inheritDoc} *

This implementation just throws an {@link UnsupportedOperationException}.*/ @Override public IntSortedSet subSet(int from, int to) { throw new UnsupportedOperationException(); } /** {@inheritDoc} *

This implementation just returns {@code null}.*/ @Override public IntComparator comparator() { return null; } /** A list iterator over a linked set. * *

This class provides a list iterator over a linked hash set. The constructor runs in constant time. */ private class SetIterator extends AbstractIntListIterator { /** The entry that will be returned by the next call to {@link java.util.ListIterator#previous()} (or {@code null} if no previous entry exists). */ int prev = -1; /** The entry that will be returned by the next call to {@link java.util.ListIterator#next()} (or {@code null} if no next entry exists). */ int next = -1; /** The last entry that was returned (or -1 if we did not iterate or used {@link #remove()}). */ int curr = -1; /** The current index (in the sense of a {@link java.util.ListIterator}). When -1, we do not know the current index.*/ int index = -1; SetIterator() { next = first; index = 0; } SetIterator(int from) { if (( (from) == (0) )) { if (IntLinkedOpenHashSet.this.containsNull) { next = (int) link[n]; prev = n; return; } else throw new NoSuchElementException("The key " + from + " does not belong to this set."); } if (( (key[last]) == (from) )) { prev = last; index = size; return; } // The starting point. final int key[] = IntLinkedOpenHashSet.this.key; int pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (from) ) ) & mask; // There's always an unused entry. while(! ( (key[pos]) == (0) )) { if (( (key[pos]) == (from) )) { // Note: no valid index known. next = (int) link[pos]; prev = pos; return; } pos = (pos + 1) & mask; } throw new NoSuchElementException("The key " + from + " does not belong to this set."); } public boolean hasNext() { return next != -1; } public boolean hasPrevious() { return prev != -1; } public int nextInt() { if (! hasNext()) throw new NoSuchElementException(); curr = next; next = (int) link[curr]; prev = curr; if (index >= 0) index++; if (ASSERTS) assert curr == n || ! ( (key[curr]) == (0) ) : "Position " + curr + " is not used"; return key[curr]; } public int previousInt() { if (! hasPrevious()) throw new NoSuchElementException(); curr = prev; prev = (int) ( link[curr] >>> 32 ); next = curr; if (index >= 0) index--; return key[curr]; } private final void ensureIndexKnown() { if (index >= 0) return; if (prev == -1) { index = 0; return; } if (next == -1) { index = size; return; } int pos = first; index = 1; while(pos != prev) { pos = (int) link[pos]; index++; } } public int nextIndex() { ensureIndexKnown(); return index; } public int previousIndex() { ensureIndexKnown(); return index - 1; } public void remove() { ensureIndexKnown(); if (curr == -1) throw new IllegalStateException(); if (curr == prev) { /* If the last operation was a next(), we are removing an entry that preceeds the current index, and thus we must decrement it. */ index--; prev = (int) ( link[curr] >>> 32 ); } else next = (int) link[curr]; size--; /* Now we manually fix the pointers. Because of our knowledge of next and prev, this is going to be faster than calling fixPointers(). */ if (prev == -1) first = next; else link[prev] ^= ( ( link[prev] ^ ( next & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); if (next == -1) last = prev; else link[next] ^= ( ( link[next] ^ ( ( prev & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); int last, slot, pos = curr; curr = -1; if (pos == n) { IntLinkedOpenHashSet.this.containsNull = false; IntLinkedOpenHashSet.this.key[n] = (0); } else { int curr; final int[] key = IntLinkedOpenHashSet.this.key; // We have to horribly duplicate the shiftKeys() code because we need to update next/prev. for(;;) { pos = ((last = pos) + 1) & mask; for(;;) { if (( (curr = key[pos]) == (0) )) { key[last] = (0); return; } slot = ( it.unimi.dsi.fastutil.HashCommon.mix( (curr) ) ) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } key[last] = curr; if (next == pos) next = last; if (prev == pos) prev = last; fixPointers(pos, last); } } } } /** Returns a type-specific list iterator on the elements in this set, starting from a given element of the set. * Please see the class documentation for implementation details. * * @param from an element to start from. * @return a type-specific list iterator starting at the given element. * @throws IllegalArgumentException if from does not belong to the set. */ @Override public IntListIterator iterator(int from) { return new SetIterator(from); } /** Returns a type-specific list iterator on the elements in this set, starting from the first element. * Please see the class documentation for implementation details. * * @return a type-specific list iterator starting at the first element. */ @Override public IntListIterator iterator() { return new SetIterator(); } /** A no-op for backward compatibility. The kind of tables implemented by * this class never need rehashing. * *

If you need to reduce the table size to fit exactly * this set, use {@link #trim()}. * * @return true. * @see #trim() * @deprecated A no-op. */ @Deprecated public boolean rehash() { return true; } /** Rehashes this set, making the table as small as possible. * *

This method rehashes the table to the smallest size satisfying the * load factor. It can be used when the set will not be changed anymore, so * to optimize access speed and size. * *

If the table size is already the minimum possible, this method * does nothing. * * @return true if there was enough memory to trim the set. * @see #trim(int) */ public boolean trim() { final int l = arraySize(size, f); if (l >= n || size > maxFill(l, f)) return true; try { rehash(l); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes this set if the table is too large. * *

Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load factor. If the current * table size is smaller than or equal to N, this method does * nothing. Otherwise, it rehashes this set in a table of size * N. * *

This method is useful when reusing sets. {@linkplain #clear() Clearing a * set} leaves the table size untouched. If you are reusing a set * many times, you can call this method with a typical * size to avoid keeping around a very large table just * because of a few large transient sets. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the set. * @see #trim() */ public boolean trim(final int n) { final int l = HashCommon.nextPowerOfTwo((int)Math.ceil(n / f)); if (l >= n || size > maxFill(l, f)) return true; try { rehash(l); } catch(OutOfMemoryError cantDoIt) { return false; } return true; } /** Rehashes the set. * *

This method implements the basic rehashing strategy, and may be * overriden by subclasses implementing different rehashing strategies (e.g., * disk-based rehashing). However, you should not override this method * unless you understand the internal workings of this class. * * @param newN the new size */ protected void rehash(final int newN) { final int key[] = this.key; final int mask = newN - 1; // Note that this is used by the hashing macro final int newKey[] = new int[newN + 1]; int i = first, prev = -1, newPrev = -1, t, pos; final long link[] = this.link; final long newLink[] = new long[newN + 1]; first = -1; for(int j = size; j-- != 0;) { if (( (key[i]) == (0) )) pos = newN; else { pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (key[i]) ) ) & mask; while (! ( (newKey[pos]) == (0) )) pos = (pos + 1) & mask; } newKey[pos] = key[i]; if (prev != -1) { newLink[newPrev] ^= ( ( newLink[newPrev] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); newLink[pos] ^= ( ( newLink[pos] ^ ( ( newPrev & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); newPrev = pos; } else { newPrev = first = pos; // Special case of SET(newLink[pos], -1, -1); newLink[pos] = -1L; } t = i; i = (int) link[i]; prev = t; } this.link = newLink; this.last = newPrev; if (newPrev != -1) // Special case of SET_NEXT(newLink[newPrev], -1); newLink[newPrev] |= -1 & 0xFFFFFFFFL; n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; } /** Returns a deep copy of this set. * *

This method performs a deep copy of this hash set; the data stored in the * set, however, is not cloned. Note that this makes a difference only for object keys. * * @return a deep copy of this set. */ @Override public IntLinkedOpenHashSet clone() { IntLinkedOpenHashSet c; try { c = (IntLinkedOpenHashSet )super.clone(); } catch(CloneNotSupportedException cantHappen) { throw new InternalError(); } c.key = key.clone(); c.containsNull = containsNull; c.link = link.clone(); return c; } /** Returns a hash code for this set. * * This method overrides the generic method provided by the superclass. * Since equals() is not overriden, it is important * that the value returned by this method is the same value as * the one returned by the overriden method. * * @return a hash code for this set. */ @Override public int hashCode() { int h = 0; for(int j = realSize(), i = 0; j-- != 0;) { while(( (key[i]) == (0) )) i++; h += (key[i]); i++; } // Zero / null have hash zero. return h; } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final IntIterator i = iterator(); s.defaultWriteObject(); for(int j = size; j-- != 0;) s.writeInt(i.nextInt()); } private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); n = arraySize(size, f); maxFill = maxFill(n, f); mask = n - 1; final int key[] = this.key = new int[n + 1]; final long link[] = this.link = new long[n + 1]; int prev = -1; first = last = -1; int k; for(int i = size, pos; i-- != 0;) { k = s.readInt(); if (( (k) == (0) )) { pos = n; containsNull = true; } else { if (! ( (key[pos = ( it.unimi.dsi.fastutil.HashCommon.mix( (k) ) ) & mask]) == (0) )) while (! ( (key[pos = (pos + 1) & mask]) == (0) )); } key[pos] = k; if (first != -1) { link[prev] ^= ( ( link[prev] ^ ( pos & 0xFFFFFFFFL ) ) & 0xFFFFFFFFL ); link[pos] ^= ( ( link[pos] ^ ( ( prev & 0xFFFFFFFFL ) << 32 ) ) & 0xFFFFFFFF00000000L ); prev = pos; } else { prev = first = pos; // Special case of SET_PREV(newLink[pos], -1); link[pos] |= (-1L & 0xFFFFFFFFL) << 32; } } last = prev; if (prev != -1) // Special case of SET_NEXT(link[prev], -1); link[prev] |= -1 & 0xFFFFFFFFL; if (ASSERTS) checkTable(); } private void checkTable() {} }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy