ml.dmlc.xgboost4j.scala.XGBoost.scala Maven / Gradle / Ivy
The newest version!
/*
Copyright (c) 2014 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package ml.dmlc.xgboost4j.scala
import java.io.InputStream
import ml.dmlc.xgboost4j.java.{Booster => JBooster, XGBoost => JXGBoost, XGBoostError}
import scala.collection.JavaConverters._
/**
* XGBoost Scala Training function.
*/
object XGBoost {
/**
* Train a booster given parameters.
*
* @param dtrain Data to be trained.
* @param params Parameters.
* @param round Number of boosting iterations.
* @param watches a group of items to be evaluated during training, this allows user to watch
* performance on the validation set.
* @param metrics array containing the evaluation metrics for each matrix in watches for each
* iteration
* @param earlyStoppingRound if non-zero, training would be stopped
* after a specified number of consecutive
* increases in any evaluation metric.
* @param obj customized objective
* @param eval customized evaluation
* @param booster train from scratch if set to null; train from an existing booster if not null.
* @return The trained booster.
*/
@throws(classOf[XGBoostError])
def train(
dtrain: DMatrix,
params: Map[String, Any],
round: Int,
watches: Map[String, DMatrix] = Map(),
metrics: Array[Array[Float]] = null,
obj: ObjectiveTrait = null,
eval: EvalTrait = null,
earlyStoppingRound: Int = 0,
booster: Booster = null): Booster = {
val jWatches = watches.mapValues(_.jDMatrix).asJava
val jBooster = if (booster == null) {
null
} else {
booster.booster
}
val xgboostInJava = JXGBoost.train(
dtrain.jDMatrix,
// we have to filter null value for customized obj and eval
params.filter(_._2 != null).mapValues(_.toString.asInstanceOf[AnyRef]).asJava,
round, jWatches, metrics, obj, eval, earlyStoppingRound, jBooster)
if (booster == null) {
new Booster(xgboostInJava)
} else {
// Avoid creating a new SBooster with the same JBooster
booster
}
}
/**
* Cross-validation with given parameters.
*
* @param data Data to be trained.
* @param params Booster params.
* @param round Number of boosting iterations.
* @param nfold Number of folds in CV.
* @param metrics Evaluation metrics to be watched in CV.
* @param obj customized objective
* @param eval customized evaluation
* @return evaluation history
*/
@throws(classOf[XGBoostError])
def crossValidation(
data: DMatrix,
params: Map[String, Any],
round: Int,
nfold: Int = 5,
metrics: Array[String] = null,
obj: ObjectiveTrait = null,
eval: EvalTrait = null): Array[String] = {
JXGBoost.crossValidation(
data.jDMatrix, params.map{ case (key: String, value) => (key, value.toString)}.
toMap[String, AnyRef].asJava,
round, nfold, metrics, obj, eval)
}
/**
* load model from modelPath
*
* @param modelPath booster modelPath
*/
@throws(classOf[XGBoostError])
def loadModel(modelPath: String): Booster = {
val xgboostInJava = JXGBoost.loadModel(modelPath)
new Booster(xgboostInJava)
}
/**
* Load a new Booster model from a file opened as input stream.
* The assumption is the input stream only contains one XGBoost Model.
* This can be used to load existing booster models saved by other XGBoost bindings.
*
* @param in The input stream of the file.
* @return The create booster
*/
@throws(classOf[XGBoostError])
def loadModel(in: InputStream): Booster = {
val xgboostInJava = JXGBoost.loadModel(in)
new Booster(xgboostInJava)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy