All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.solvers.LaguerreSolver Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.solvers;

import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math3.complex.Complex;
import org.apache.commons.math3.complex.ComplexUtils;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;

/**
 * Implements the 
 * Laguerre's Method for root finding of real coefficient polynomials.
 * For reference, see
 * 
* A First Course in Numerical Analysis, * ISBN 048641454X, chapter 8. *
* Laguerre's method is global in the sense that it can start with any initial * approximation and be able to solve all roots from that point. * The algorithm requires a bracketing condition. * * @since 1.2 */ public class LaguerreSolver extends AbstractPolynomialSolver { /** Default absolute accuracy. */ private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6; /** Complex solver. */ private final ComplexSolver complexSolver = new ComplexSolver(); /** * Construct a solver with default accuracy (1e-6). */ public LaguerreSolver() { this(DEFAULT_ABSOLUTE_ACCURACY); } /** * Construct a solver. * * @param absoluteAccuracy Absolute accuracy. */ public LaguerreSolver(double absoluteAccuracy) { super(absoluteAccuracy); } /** * Construct a solver. * * @param relativeAccuracy Relative accuracy. * @param absoluteAccuracy Absolute accuracy. */ public LaguerreSolver(double relativeAccuracy, double absoluteAccuracy) { super(relativeAccuracy, absoluteAccuracy); } /** * Construct a solver. * * @param relativeAccuracy Relative accuracy. * @param absoluteAccuracy Absolute accuracy. * @param functionValueAccuracy Function value accuracy. */ public LaguerreSolver(double relativeAccuracy, double absoluteAccuracy, double functionValueAccuracy) { super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy); } /** * {@inheritDoc} */ @Override public double doSolve() throws TooManyEvaluationsException, NumberIsTooLargeException, NoBracketingException { final double min = getMin(); final double max = getMax(); final double initial = getStartValue(); final double functionValueAccuracy = getFunctionValueAccuracy(); verifySequence(min, initial, max); // Return the initial guess if it is good enough. final double yInitial = computeObjectiveValue(initial); if (FastMath.abs(yInitial) <= functionValueAccuracy) { return initial; } // Return the first endpoint if it is good enough. final double yMin = computeObjectiveValue(min); if (FastMath.abs(yMin) <= functionValueAccuracy) { return min; } // Reduce interval if min and initial bracket the root. if (yInitial * yMin < 0) { return laguerre(min, initial, yMin, yInitial); } // Return the second endpoint if it is good enough. final double yMax = computeObjectiveValue(max); if (FastMath.abs(yMax) <= functionValueAccuracy) { return max; } // Reduce interval if initial and max bracket the root. if (yInitial * yMax < 0) { return laguerre(initial, max, yInitial, yMax); } throw new NoBracketingException(min, max, yMin, yMax); } /** * Find a real root in the given interval. * * Despite the bracketing condition, the root returned by * {@link LaguerreSolver.ComplexSolver#solve(Complex[],Complex)} may * not be a real zero inside {@code [min, max]}. * For example, p(x) = x3 + 1, * with {@code min = -2}, {@code max = 2}, {@code initial = 0}. * When it occurs, this code calls * {@link LaguerreSolver.ComplexSolver#solveAll(Complex[],Complex)} * in order to obtain all roots and picks up one real root. * * @param lo Lower bound of the search interval. * @param hi Higher bound of the search interval. * @param fLo Function value at the lower bound of the search interval. * @param fHi Function value at the higher bound of the search interval. * @return the point at which the function value is zero. * @deprecated This method should not be part of the public API: It will * be made private in version 4.0. */ @Deprecated public double laguerre(double lo, double hi, double fLo, double fHi) { final Complex c[] = ComplexUtils.convertToComplex(getCoefficients()); final Complex initial = new Complex(0.5 * (lo + hi), 0); final Complex z = complexSolver.solve(c, initial); if (complexSolver.isRoot(lo, hi, z)) { return z.getReal(); } else { double r = Double.NaN; // Solve all roots and select the one we are seeking. Complex[] root = complexSolver.solveAll(c, initial); for (int i = 0; i < root.length; i++) { if (complexSolver.isRoot(lo, hi, root[i])) { r = root[i].getReal(); break; } } return r; } } /** * Find all complex roots for the polynomial with the given * coefficients, starting from the given initial value. *

* Note: This method is not part of the API of {@link BaseUnivariateSolver}.

* * @param coefficients Polynomial coefficients. * @param initial Start value. * @return the full set of complex roots of the polynomial * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the maximum number of evaluations is exceeded when solving for one of the roots * @throws NullArgumentException if the {@code coefficients} is * {@code null}. * @throws NoDataException if the {@code coefficients} array is empty. * @since 3.1 */ public Complex[] solveAllComplex(double[] coefficients, double initial) throws NullArgumentException, NoDataException, TooManyEvaluationsException { return solveAllComplex(coefficients, initial, Integer.MAX_VALUE); } /** * Find all complex roots for the polynomial with the given * coefficients, starting from the given initial value. *

* Note: This method is not part of the API of {@link BaseUnivariateSolver}.

* * @param coefficients polynomial coefficients * @param initial start value * @param maxEval maximum number of evaluations * @return the full set of complex roots of the polynomial * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the maximum number of evaluations is exceeded when solving for one of the roots * @throws NullArgumentException if the {@code coefficients} is * {@code null} * @throws NoDataException if the {@code coefficients} array is empty * @since 3.5 */ public Complex[] solveAllComplex(double[] coefficients, double initial, int maxEval) throws NullArgumentException, NoDataException, TooManyEvaluationsException { setup(maxEval, new PolynomialFunction(coefficients), Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, initial); return complexSolver.solveAll(ComplexUtils.convertToComplex(coefficients), new Complex(initial, 0d)); } /** * Find a complex root for the polynomial with the given coefficients, * starting from the given initial value. *

* Note: This method is not part of the API of {@link BaseUnivariateSolver}.

* * @param coefficients Polynomial coefficients. * @param initial Start value. * @return a complex root of the polynomial * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the maximum number of evaluations is exceeded. * @throws NullArgumentException if the {@code coefficients} is * {@code null}. * @throws NoDataException if the {@code coefficients} array is empty. * @since 3.1 */ public Complex solveComplex(double[] coefficients, double initial) throws NullArgumentException, NoDataException, TooManyEvaluationsException { return solveComplex(coefficients, initial, Integer.MAX_VALUE); } /** * Find a complex root for the polynomial with the given coefficients, * starting from the given initial value. *

* Note: This method is not part of the API of {@link BaseUnivariateSolver}.

* * @param coefficients polynomial coefficients * @param initial start value * @param maxEval maximum number of evaluations * @return a complex root of the polynomial * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the maximum number of evaluations is exceeded * @throws NullArgumentException if the {@code coefficients} is * {@code null} * @throws NoDataException if the {@code coefficients} array is empty * @since 3.1 */ public Complex solveComplex(double[] coefficients, double initial, int maxEval) throws NullArgumentException, NoDataException, TooManyEvaluationsException { setup(maxEval, new PolynomialFunction(coefficients), Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, initial); return complexSolver.solve(ComplexUtils.convertToComplex(coefficients), new Complex(initial, 0d)); } /** * Class for searching all (complex) roots. */ private class ComplexSolver { /** * Check whether the given complex root is actually a real zero * in the given interval, within the solver tolerance level. * * @param min Lower bound for the interval. * @param max Upper bound for the interval. * @param z Complex root. * @return {@code true} if z is a real zero. */ public boolean isRoot(double min, double max, Complex z) { if (isSequence(min, z.getReal(), max)) { double tolerance = FastMath.max(getRelativeAccuracy() * z.abs(), getAbsoluteAccuracy()); return (FastMath.abs(z.getImaginary()) <= tolerance) || (z.abs() <= getFunctionValueAccuracy()); } return false; } /** * Find all complex roots for the polynomial with the given * coefficients, starting from the given initial value. * * @param coefficients Polynomial coefficients. * @param initial Start value. * @return the point at which the function value is zero. * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the maximum number of evaluations is exceeded. * @throws NullArgumentException if the {@code coefficients} is * {@code null}. * @throws NoDataException if the {@code coefficients} array is empty. */ public Complex[] solveAll(Complex coefficients[], Complex initial) throws NullArgumentException, NoDataException, TooManyEvaluationsException { if (coefficients == null) { throw new NullArgumentException(); } final int n = coefficients.length - 1; if (n == 0) { throw new NoDataException(LocalizedFormats.POLYNOMIAL); } // Coefficients for deflated polynomial. final Complex c[] = new Complex[n + 1]; for (int i = 0; i <= n; i++) { c[i] = coefficients[i]; } // Solve individual roots successively. final Complex root[] = new Complex[n]; for (int i = 0; i < n; i++) { final Complex subarray[] = new Complex[n - i + 1]; System.arraycopy(c, 0, subarray, 0, subarray.length); root[i] = solve(subarray, initial); // Polynomial deflation using synthetic division. Complex newc = c[n - i]; Complex oldc = null; for (int j = n - i - 1; j >= 0; j--) { oldc = c[j]; c[j] = newc; newc = oldc.add(newc.multiply(root[i])); } } return root; } /** * Find a complex root for the polynomial with the given coefficients, * starting from the given initial value. * * @param coefficients Polynomial coefficients. * @param initial Start value. * @return the point at which the function value is zero. * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the maximum number of evaluations is exceeded. * @throws NullArgumentException if the {@code coefficients} is * {@code null}. * @throws NoDataException if the {@code coefficients} array is empty. */ public Complex solve(Complex coefficients[], Complex initial) throws NullArgumentException, NoDataException, TooManyEvaluationsException { if (coefficients == null) { throw new NullArgumentException(); } final int n = coefficients.length - 1; if (n == 0) { throw new NoDataException(LocalizedFormats.POLYNOMIAL); } final double absoluteAccuracy = getAbsoluteAccuracy(); final double relativeAccuracy = getRelativeAccuracy(); final double functionValueAccuracy = getFunctionValueAccuracy(); final Complex nC = new Complex(n, 0); final Complex n1C = new Complex(n - 1, 0); Complex z = initial; Complex oldz = new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY); while (true) { // Compute pv (polynomial value), dv (derivative value), and // d2v (second derivative value) simultaneously. Complex pv = coefficients[n]; Complex dv = Complex.ZERO; Complex d2v = Complex.ZERO; for (int j = n-1; j >= 0; j--) { d2v = dv.add(z.multiply(d2v)); dv = pv.add(z.multiply(dv)); pv = coefficients[j].add(z.multiply(pv)); } d2v = d2v.multiply(new Complex(2.0, 0.0)); // Check for convergence. final double tolerance = FastMath.max(relativeAccuracy * z.abs(), absoluteAccuracy); if ((z.subtract(oldz)).abs() <= tolerance) { return z; } if (pv.abs() <= functionValueAccuracy) { return z; } // Now pv != 0, calculate the new approximation. final Complex G = dv.divide(pv); final Complex G2 = G.multiply(G); final Complex H = G2.subtract(d2v.divide(pv)); final Complex delta = n1C.multiply((nC.multiply(H)).subtract(G2)); // Choose a denominator larger in magnitude. final Complex deltaSqrt = delta.sqrt(); final Complex dplus = G.add(deltaSqrt); final Complex dminus = G.subtract(deltaSqrt); final Complex denominator = dplus.abs() > dminus.abs() ? dplus : dminus; // Perturb z if denominator is zero, for instance, // p(x) = x^3 + 1, z = 0. if (denominator.equals(new Complex(0.0, 0.0))) { z = z.add(new Complex(absoluteAccuracy, absoluteAccuracy)); oldz = new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY); } else { oldz = z; z = z.subtract(nC.divide(denominator)); } incrementEvaluationCount(); } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy