org.apache.commons.math3.optimization.direct.MultiDirectionalSimplex Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.optimization.direct;
import java.util.Comparator;
import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.optimization.PointValuePair;
/**
* This class implements the multi-directional direct search method.
*
* @deprecated As of 3.1 (to be removed in 4.0).
* @since 3.0
*/
@Deprecated
public class MultiDirectionalSimplex extends AbstractSimplex {
/** Default value for {@link #khi}: {@value}. */
private static final double DEFAULT_KHI = 2;
/** Default value for {@link #gamma}: {@value}. */
private static final double DEFAULT_GAMMA = 0.5;
/** Expansion coefficient. */
private final double khi;
/** Contraction coefficient. */
private final double gamma;
/**
* Build a multi-directional simplex with default coefficients.
* The default values are 2.0 for khi and 0.5 for gamma.
*
* @param n Dimension of the simplex.
*/
public MultiDirectionalSimplex(final int n) {
this(n, 1d);
}
/**
* Build a multi-directional simplex with default coefficients.
* The default values are 2.0 for khi and 0.5 for gamma.
*
* @param n Dimension of the simplex.
* @param sideLength Length of the sides of the default (hypercube)
* simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}.
*/
public MultiDirectionalSimplex(final int n, double sideLength) {
this(n, sideLength, DEFAULT_KHI, DEFAULT_GAMMA);
}
/**
* Build a multi-directional simplex with specified coefficients.
*
* @param n Dimension of the simplex. See
* {@link AbstractSimplex#AbstractSimplex(int,double)}.
* @param khi Expansion coefficient.
* @param gamma Contraction coefficient.
*/
public MultiDirectionalSimplex(final int n,
final double khi, final double gamma) {
this(n, 1d, khi, gamma);
}
/**
* Build a multi-directional simplex with specified coefficients.
*
* @param n Dimension of the simplex. See
* {@link AbstractSimplex#AbstractSimplex(int,double)}.
* @param sideLength Length of the sides of the default (hypercube)
* simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}.
* @param khi Expansion coefficient.
* @param gamma Contraction coefficient.
*/
public MultiDirectionalSimplex(final int n, double sideLength,
final double khi, final double gamma) {
super(n, sideLength);
this.khi = khi;
this.gamma = gamma;
}
/**
* Build a multi-directional simplex with default coefficients.
* The default values are 2.0 for khi and 0.5 for gamma.
*
* @param steps Steps along the canonical axes representing box edges.
* They may be negative but not zero. See
*/
public MultiDirectionalSimplex(final double[] steps) {
this(steps, DEFAULT_KHI, DEFAULT_GAMMA);
}
/**
* Build a multi-directional simplex with specified coefficients.
*
* @param steps Steps along the canonical axes representing box edges.
* They may be negative but not zero. See
* {@link AbstractSimplex#AbstractSimplex(double[])}.
* @param khi Expansion coefficient.
* @param gamma Contraction coefficient.
*/
public MultiDirectionalSimplex(final double[] steps,
final double khi, final double gamma) {
super(steps);
this.khi = khi;
this.gamma = gamma;
}
/**
* Build a multi-directional simplex with default coefficients.
* The default values are 2.0 for khi and 0.5 for gamma.
*
* @param referenceSimplex Reference simplex. See
* {@link AbstractSimplex#AbstractSimplex(double[][])}.
*/
public MultiDirectionalSimplex(final double[][] referenceSimplex) {
this(referenceSimplex, DEFAULT_KHI, DEFAULT_GAMMA);
}
/**
* Build a multi-directional simplex with specified coefficients.
*
* @param referenceSimplex Reference simplex. See
* {@link AbstractSimplex#AbstractSimplex(double[][])}.
* @param khi Expansion coefficient.
* @param gamma Contraction coefficient.
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
* if the reference simplex does not contain at least one point.
* @throws org.apache.commons.math3.exception.DimensionMismatchException
* if there is a dimension mismatch in the reference simplex.
*/
public MultiDirectionalSimplex(final double[][] referenceSimplex,
final double khi, final double gamma) {
super(referenceSimplex);
this.khi = khi;
this.gamma = gamma;
}
/** {@inheritDoc} */
@Override
public void iterate(final MultivariateFunction evaluationFunction,
final Comparator comparator) {
// Save the original simplex.
final PointValuePair[] original = getPoints();
final PointValuePair best = original[0];
// Perform a reflection step.
final PointValuePair reflected = evaluateNewSimplex(evaluationFunction,
original, 1, comparator);
if (comparator.compare(reflected, best) < 0) {
// Compute the expanded simplex.
final PointValuePair[] reflectedSimplex = getPoints();
final PointValuePair expanded = evaluateNewSimplex(evaluationFunction,
original, khi, comparator);
if (comparator.compare(reflected, expanded) <= 0) {
// Keep the reflected simplex.
setPoints(reflectedSimplex);
}
// Keep the expanded simplex.
return;
}
// Compute the contracted simplex.
evaluateNewSimplex(evaluationFunction, original, gamma, comparator);
}
/**
* Compute and evaluate a new simplex.
*
* @param evaluationFunction Evaluation function.
* @param original Original simplex (to be preserved).
* @param coeff Linear coefficient.
* @param comparator Comparator to use to sort simplex vertices from best
* to poorest.
* @return the best point in the transformed simplex.
* @throws org.apache.commons.math3.exception.TooManyEvaluationsException
* if the maximal number of evaluations is exceeded.
*/
private PointValuePair evaluateNewSimplex(final MultivariateFunction evaluationFunction,
final PointValuePair[] original,
final double coeff,
final Comparator comparator) {
final double[] xSmallest = original[0].getPointRef();
// Perform a linear transformation on all the simplex points,
// except the first one.
setPoint(0, original[0]);
final int dim = getDimension();
for (int i = 1; i < getSize(); i++) {
final double[] xOriginal = original[i].getPointRef();
final double[] xTransformed = new double[dim];
for (int j = 0; j < dim; j++) {
xTransformed[j] = xSmallest[j] + coeff * (xSmallest[j] - xOriginal[j]);
}
setPoint(i, new PointValuePair(xTransformed, Double.NaN, false));
}
// Evaluate the simplex.
evaluate(evaluationFunction, comparator);
return getPoint(0);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy