All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.primes.PollardRho Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.primes;

import java.util.ArrayList;
import java.util.List;

import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the Pollard's rho factorization algorithm.
 * @since 3.2
 */
class PollardRho {

    /**
     * Hide utility class.
     */
    private PollardRho() {
    }

    /**
     * Factorization using Pollard's rho algorithm.
     * @param n number to factors, must be > 0
     * @return the list of prime factors of n.
     */
    public static List primeFactors(int n) {
        final List factors = new ArrayList();

        n = SmallPrimes.smallTrialDivision(n, factors);
        if (1 == n) {
            return factors;
        }

        if (SmallPrimes.millerRabinPrimeTest(n)) {
            factors.add(n);
            return factors;
        }

        int divisor = rhoBrent(n);
        factors.add(divisor);
        factors.add(n / divisor);
        return factors;
    }

    /**
     * Implementation of the Pollard's rho factorization algorithm.
     * 

* This implementation follows the paper "An improved Monte Carlo factorization algorithm" * by Richard P. Brent. This avoids the triple computation of f(x) typically found in Pollard's * rho implementations. It also batches several gcd computation into 1. *

* The backtracking is not implemented as we deal only with semi-primes. * * @param n number to factor, must be semi-prime. * @return a prime factor of n. */ static int rhoBrent(final int n) { final int x0 = 2; final int m = 25; int cst = SmallPrimes.PRIMES_LAST; int y = x0; int r = 1; do { int x = y; for (int i = 0; i < r; i++) { final long y2 = ((long) y) * y; y = (int) ((y2 + cst) % n); } int k = 0; do { final int bound = FastMath.min(m, r - k); int q = 1; for (int i = -3; i < bound; i++) { //start at -3 to ensure we enter this loop at least 3 times final long y2 = ((long) y) * y; y = (int) ((y2 + cst) % n); final long divisor = FastMath.abs(x - y); if (0 == divisor) { cst += SmallPrimes.PRIMES_LAST; k = -m; y = x0; r = 1; break; } final long prod = divisor * q; q = (int) (prod % n); if (0 == q) { return gcdPositive(FastMath.abs((int) divisor), n); } } final int out = gcdPositive(FastMath.abs(q), n); if (1 != out) { return out; } k += m; } while (k < r); r = 2 * r; } while (true); } /** * Gcd between two positive numbers. *

* Gets the greatest common divisor of two numbers, using the "binary gcd" method, * which avoids division and modulo operations. See Knuth 4.5.2 algorithm B. * This algorithm is due to Josef Stein (1961). *

* Special cases: *
    *
  • The result of {@code gcd(x, x)}, {@code gcd(0, x)} and {@code gcd(x, 0)} is the value of {@code x}.
  • *
  • The invocation {@code gcd(0, 0)} is the only one which returns {@code 0}.
  • *
* * @param a first number, must be ≥ 0 * @param b second number, must be ≥ 0 * @return gcd(a,b) */ static int gcdPositive(int a, int b){ // both a and b must be positive, it is not checked here // gdc(a,0) = a if (a == 0) { return b; } else if (b == 0) { return a; } // make a and b odd, keep in mind the common power of twos final int aTwos = Integer.numberOfTrailingZeros(a); a >>= aTwos; final int bTwos = Integer.numberOfTrailingZeros(b); b >>= bTwos; final int shift = FastMath.min(aTwos, bTwos); // a and b >0 // if a > b then gdc(a,b) = gcd(a-b,b) // if a < b then gcd(a,b) = gcd(b-a,a) // so next a is the absolute difference and next b is the minimum of current values while (a != b) { final int delta = a - b; b = FastMath.min(a, b); a = FastMath.abs(delta); // for speed optimization: // remove any power of two in a as b is guaranteed to be odd throughout all iterations a >>= Integer.numberOfTrailingZeros(a); } // gcd(a,a) = a, just "add" the common power of twos return a << shift; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy