All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.analysis.cn.smart.HMMChineseTokenizer Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.analysis.cn.smart;


import java.io.IOException;
import java.text.BreakIterator;
import java.util.Iterator;
import java.util.Locale;

import org.apache.lucene.analysis.cn.smart.hhmm.SegToken;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.analysis.tokenattributes.OffsetAttribute;
import org.apache.lucene.analysis.tokenattributes.TypeAttribute;
import org.apache.lucene.analysis.util.SegmentingTokenizerBase;
import org.apache.lucene.util.AttributeFactory;

/**
 * Tokenizer for Chinese or mixed Chinese-English text.
 * 

* The analyzer uses probabilistic knowledge to find the optimal word segmentation for Simplified Chinese text. * The text is first broken into sentences, then each sentence is segmented into words. */ public class HMMChineseTokenizer extends SegmentingTokenizerBase { /** used for breaking the text into sentences */ private static final BreakIterator sentenceProto = BreakIterator.getSentenceInstance(Locale.ROOT); private final CharTermAttribute termAtt = addAttribute(CharTermAttribute.class); private final OffsetAttribute offsetAtt = addAttribute(OffsetAttribute.class); private final TypeAttribute typeAtt = addAttribute(TypeAttribute.class); private final WordSegmenter wordSegmenter = new WordSegmenter(); private Iterator tokens; /** Creates a new HMMChineseTokenizer */ public HMMChineseTokenizer() { this(DEFAULT_TOKEN_ATTRIBUTE_FACTORY); } /** Creates a new HMMChineseTokenizer, supplying the AttributeFactory */ public HMMChineseTokenizer(AttributeFactory factory) { super(factory, (BreakIterator)sentenceProto.clone()); } @Override protected void setNextSentence(int sentenceStart, int sentenceEnd) { String sentence = new String(buffer, sentenceStart, sentenceEnd - sentenceStart); tokens = wordSegmenter.segmentSentence(sentence, offset + sentenceStart).iterator(); } @Override protected boolean incrementWord() { if (tokens == null || !tokens.hasNext()) { return false; } else { SegToken token = tokens.next(); clearAttributes(); termAtt.copyBuffer(token.charArray, 0, token.charArray.length); offsetAtt.setOffset(correctOffset(token.startOffset), correctOffset(token.endOffset)); typeAtt.setType("word"); return true; } } @Override public void reset() throws IOException { super.reset(); tokens = null; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy