All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.index.DefaultIndexingChain Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.index;


import java.io.IOException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;

import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.codecs.DocValuesConsumer;
import org.apache.lucene.codecs.DocValuesFormat;
import org.apache.lucene.codecs.NormsConsumer;
import org.apache.lucene.codecs.NormsFormat;
import org.apache.lucene.codecs.StoredFieldsWriter;
import org.apache.lucene.document.FieldType;
import org.apache.lucene.search.similarities.Similarity;
import org.apache.lucene.store.IOContext;
import org.apache.lucene.util.ArrayUtil;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.BytesRefHash.MaxBytesLengthExceededException;
import org.apache.lucene.util.Counter;
import org.apache.lucene.util.IOUtils;
import org.apache.lucene.util.RamUsageEstimator;

/** Default general purpose indexing chain, which handles
 *  indexing all types of fields. */
final class DefaultIndexingChain extends DocConsumer {
  final Counter bytesUsed;
  final DocumentsWriterPerThread.DocState docState;
  final DocumentsWriterPerThread docWriter;
  final FieldInfos.Builder fieldInfos;

  // Writes postings and term vectors:
  final TermsHash termsHash;

  // lazy init:
  private StoredFieldsWriter storedFieldsWriter;
  private int lastStoredDocID; 

  // NOTE: I tried using Hash Map
  // but it was ~2% slower on Wiki and Geonames with Java
  // 1.7.0_25:
  private PerField[] fieldHash = new PerField[2];
  private int hashMask = 1;

  private int totalFieldCount;
  private long nextFieldGen;

  // Holds fields seen in each document
  private PerField[] fields = new PerField[1];

  public DefaultIndexingChain(DocumentsWriterPerThread docWriter) throws IOException {
    this.docWriter = docWriter;
    this.fieldInfos = docWriter.getFieldInfosBuilder();
    this.docState = docWriter.docState;
    this.bytesUsed = docWriter.bytesUsed;

    TermsHash termVectorsWriter = new TermVectorsConsumer(docWriter);
    termsHash = new FreqProxTermsWriter(docWriter, termVectorsWriter);
  }
  
  // TODO: can we remove this lazy-init / make cleaner / do it another way...? 
  private void initStoredFieldsWriter() throws IOException {
    if (storedFieldsWriter == null) {
      storedFieldsWriter = docWriter.codec.storedFieldsFormat().fieldsWriter(docWriter.directory, docWriter.getSegmentInfo(), IOContext.DEFAULT);
    }
  }

  @Override
  public void flush(SegmentWriteState state) throws IOException, AbortingException {

    // NOTE: caller (DocumentsWriterPerThread) handles
    // aborting on any exception from this method

    int maxDoc = state.segmentInfo.maxDoc();
    long t0 = System.nanoTime();
    writeNorms(state);
    if (docState.infoStream.isEnabled("IW")) {
      docState.infoStream.message("IW", ((System.nanoTime()-t0)/1000000) + " msec to write norms");
    }
    
    t0 = System.nanoTime();
    writeDocValues(state);
    if (docState.infoStream.isEnabled("IW")) {
      docState.infoStream.message("IW", ((System.nanoTime()-t0)/1000000) + " msec to write docValues");
    }

    // it's possible all docs hit non-aborting exceptions...
    t0 = System.nanoTime();
    initStoredFieldsWriter();
    fillStoredFields(maxDoc);
    storedFieldsWriter.finish(state.fieldInfos, maxDoc);
    storedFieldsWriter.close();
    if (docState.infoStream.isEnabled("IW")) {
      docState.infoStream.message("IW", ((System.nanoTime()-t0)/1000000) + " msec to finish stored fields");
    }

    t0 = System.nanoTime();
    Map fieldsToFlush = new HashMap<>();
    for (int i=0;i= fieldHash.length/2) {
        rehash();
      }

      if (totalFieldCount > fields.length) {
        PerField[] newFields = new PerField[ArrayUtil.oversize(totalFieldCount, RamUsageEstimator.NUM_BYTES_OBJECT_REF)];
        System.arraycopy(fields, 0, newFields, 0, fields.length);
        fields = newFields;
      }

    } else if (invert && fp.invertState == null) {
      // Messy: must set this here because e.g. FreqProxTermsWriterPerField looks at the initial
      // IndexOptions to decide what arrays it must create).  Then, we also must set it in
      // PerField.invert to allow for later downgrading of the index options:
      fp.fieldInfo.setIndexOptions(fieldType.indexOptions());
      fp.setInvertState();
    }

    return fp;
  }

  /** NOTE: not static: accesses at least docState, termsHash. */
  private final class PerField implements Comparable {

    final FieldInfo fieldInfo;
    final Similarity similarity;

    FieldInvertState invertState;
    TermsHashPerField termsHashPerField;

    // Non-null if this field ever had doc values in this
    // segment:
    DocValuesWriter docValuesWriter;

    /** We use this to know when a PerField is seen for the
     *  first time in the current document. */
    long fieldGen = -1;

    // Used by the hash table
    PerField next;

    // Lazy init'd:
    NormValuesWriter norms;
    
    // reused
    TokenStream tokenStream;

    IndexOptions indexOptions;

    public PerField(FieldInfo fieldInfo, boolean invert) {
      this.fieldInfo = fieldInfo;
      similarity = docState.similarity;
      if (invert) {
        setInvertState();
      }
    }

    void setInvertState() {
      invertState = new FieldInvertState(fieldInfo.name);
      termsHashPerField = termsHash.addField(invertState, fieldInfo);
      if (fieldInfo.omitsNorms() == false) {
        assert norms == null;
        // Even if no documents actually succeed in setting a norm, we still write norms for this segment:
        norms = new NormValuesWriter(fieldInfo, docState.docWriter.bytesUsed);
      }
    }

    @Override
    public int compareTo(PerField other) {
      return this.fieldInfo.name.compareTo(other.fieldInfo.name);
    }

    public void finish() throws IOException {
      if (fieldInfo.omitsNorms() == false && invertState.length != 0) {
        norms.addValue(docState.docID, similarity.computeNorm(invertState));
      }

      termsHashPerField.finish();
    }

    /** Inverts one field for one document; first is true
     *  if this is the first time we are seeing this field
     *  name in this document. */
    public void invert(IndexableField field, boolean first) throws IOException, AbortingException {
      if (first) {
        // First time we're seeing this field (indexed) in
        // this document:
        invertState.reset();
      }

      IndexableFieldType fieldType = field.fieldType();

      IndexOptions indexOptions = fieldType.indexOptions();
      fieldInfo.setIndexOptions(indexOptions);

      if (fieldType.omitNorms()) {
        fieldInfo.setOmitsNorms();
      }

      final boolean analyzed = fieldType.tokenized() && docState.analyzer != null;
        
      // only bother checking offsets if something will consume them.
      // TODO: after we fix analyzers, also check if termVectorOffsets will be indexed.
      final boolean checkOffsets = indexOptions == IndexOptions.DOCS_AND_FREQS_AND_POSITIONS_AND_OFFSETS;

      /*
       * To assist people in tracking down problems in analysis components, we wish to write the field name to the infostream
       * when we fail. We expect some caller to eventually deal with the real exception, so we don't want any 'catch' clauses,
       * but rather a finally that takes note of the problem.
       */
      boolean succeededInProcessingField = false;
      try (TokenStream stream = tokenStream = field.tokenStream(docState.analyzer, tokenStream)) {
        // reset the TokenStream to the first token
        stream.reset();
        invertState.setAttributeSource(stream);
        termsHashPerField.start(field, first);

        while (stream.incrementToken()) {

          // If we hit an exception in stream.next below
          // (which is fairly common, e.g. if analyzer
          // chokes on a given document), then it's
          // non-aborting and (above) this one document
          // will be marked as deleted, but still
          // consume a docID

          int posIncr = invertState.posIncrAttribute.getPositionIncrement();
          invertState.position += posIncr;
          if (invertState.position < invertState.lastPosition) {
            if (posIncr == 0) {
              throw new IllegalArgumentException("first position increment must be > 0 (got 0) for field '" + field.name() + "'");
            } else {
              throw new IllegalArgumentException("position increments (and gaps) must be >= 0 (got " + posIncr + ") for field '" + field.name() + "'");
            }
          } else if (invertState.position > IndexWriter.MAX_POSITION) {
            throw new IllegalArgumentException("position " + invertState.position + " is too large for field '" + field.name() + "': max allowed position is " + IndexWriter.MAX_POSITION);
          }
          invertState.lastPosition = invertState.position;
          if (posIncr == 0) {
            invertState.numOverlap++;
          }
              
          if (checkOffsets) {
            int startOffset = invertState.offset + invertState.offsetAttribute.startOffset();
            int endOffset = invertState.offset + invertState.offsetAttribute.endOffset();
            if (startOffset < invertState.lastStartOffset || endOffset < startOffset) {
              throw new IllegalArgumentException("startOffset must be non-negative, and endOffset must be >= startOffset, and offsets must not go backwards "
                                                 + "startOffset=" + startOffset + ",endOffset=" + endOffset + ",lastStartOffset=" + invertState.lastStartOffset + " for field '" + field.name() + "'");
            }
            invertState.lastStartOffset = startOffset;
          }

          invertState.length++;
          if (invertState.length < 0) {
            throw new IllegalArgumentException("too many tokens in field '" + field.name() + "'");
          }
          //System.out.println("  term=" + invertState.termAttribute);

          // If we hit an exception in here, we abort
          // all buffered documents since the last
          // flush, on the likelihood that the
          // internal state of the terms hash is now
          // corrupt and should not be flushed to a
          // new segment:
          try {
            termsHashPerField.add();
          } catch (MaxBytesLengthExceededException e) {
            byte[] prefix = new byte[30];
            BytesRef bigTerm = invertState.termAttribute.getBytesRef();
            System.arraycopy(bigTerm.bytes, bigTerm.offset, prefix, 0, 30);
            String msg = "Document contains at least one immense term in field=\"" + fieldInfo.name + "\" (whose UTF8 encoding is longer than the max length " + DocumentsWriterPerThread.MAX_TERM_LENGTH_UTF8 + "), all of which were skipped.  Please correct the analyzer to not produce such terms.  The prefix of the first immense term is: '" + Arrays.toString(prefix) + "...', original message: " + e.getMessage();
            if (docState.infoStream.isEnabled("IW")) {
              docState.infoStream.message("IW", "ERROR: " + msg);
            }
            // Document will be deleted above:
            throw new IllegalArgumentException(msg, e);
          } catch (Throwable th) {
            throw AbortingException.wrap(th);
          }
        }

        // trigger streams to perform end-of-stream operations
        stream.end();

        // TODO: maybe add some safety? then again, it's already checked 
        // when we come back around to the field...
        invertState.position += invertState.posIncrAttribute.getPositionIncrement();
        invertState.offset += invertState.offsetAttribute.endOffset();

        /* if there is an exception coming through, we won't set this to true here:*/
        succeededInProcessingField = true;
      } finally {
        if (!succeededInProcessingField && docState.infoStream.isEnabled("DW")) {
          docState.infoStream.message("DW", "An exception was thrown while processing field " + fieldInfo.name);
        }
      }

      if (analyzed) {
        invertState.position += docState.analyzer.getPositionIncrementGap(fieldInfo.name);
        invertState.offset += docState.analyzer.getOffsetGap(fieldInfo.name);
      }

      invertState.boost *= field.boost();
    }
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy