org.apache.lucene.search.FuzzyQuery Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.search;
import java.io.IOException;
import org.apache.lucene.index.SingleTermsEnum;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.util.AttributeSource;
import org.apache.lucene.util.ToStringUtils;
import org.apache.lucene.util.automaton.LevenshteinAutomata;
/** Implements the fuzzy search query. The similarity measurement
* is based on the Damerau-Levenshtein (optimal string alignment) algorithm,
* though you can explicitly choose classic Levenshtein by passing false
* to the transpositions
parameter.
*
* This query uses {@link MultiTermQuery.TopTermsScoringBooleanQueryRewrite}
* as default. So terms will be collected and scored according to their
* edit distance. Only the top terms are used for building the {@link BooleanQuery}.
* It is not recommended to change the rewrite mode for fuzzy queries.
*
*
At most, this query will match terms up to
* {@value org.apache.lucene.util.automaton.LevenshteinAutomata#MAXIMUM_SUPPORTED_DISTANCE} edits.
* Higher distances (especially with transpositions enabled), are generally not useful and
* will match a significant amount of the term dictionary. If you really want this, consider
* using an n-gram indexing technique (such as the SpellChecker in the
* suggest module) instead.
*
*
NOTE: terms of length 1 or 2 will sometimes not match because of how the scaled
* distance between two terms is computed. For a term to match, the edit distance between
* the terms must be less than the minimum length term (either the input term, or
* the candidate term). For example, FuzzyQuery on term "abcd" with maxEdits=2 will
* not match an indexed term "ab", and FuzzyQuery on term "a" with maxEdits=2 will not
* match an indexed term "abc".
*/
public class FuzzyQuery extends MultiTermQuery {
public final static int defaultMaxEdits = LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE;
public final static int defaultPrefixLength = 0;
public final static int defaultMaxExpansions = 50;
public final static boolean defaultTranspositions = true;
private final int maxEdits;
private final int maxExpansions;
private final boolean transpositions;
private final int prefixLength;
private final Term term;
/**
* Create a new FuzzyQuery that will match terms with an edit distance
* of at most maxEdits
to term
.
* If a prefixLength
> 0 is specified, a common prefix
* of that length is also required.
*
* @param term the term to search for
* @param maxEdits must be {@code >= 0} and {@code <=} {@link LevenshteinAutomata#MAXIMUM_SUPPORTED_DISTANCE}.
* @param prefixLength length of common (non-fuzzy) prefix
* @param maxExpansions the maximum number of terms to match. If this number is
* greater than {@link BooleanQuery#getMaxClauseCount} when the query is rewritten,
* then the maxClauseCount will be used instead.
* @param transpositions true if transpositions should be treated as a primitive
* edit operation. If this is false, comparisons will implement the classic
* Levenshtein algorithm.
*/
public FuzzyQuery(Term term, int maxEdits, int prefixLength, int maxExpansions, boolean transpositions) {
super(term.field());
if (maxEdits < 0 || maxEdits > LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE) {
throw new IllegalArgumentException("maxEdits must be between 0 and " + LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE);
}
if (prefixLength < 0) {
throw new IllegalArgumentException("prefixLength cannot be negative.");
}
if (maxExpansions <= 0) {
throw new IllegalArgumentException("maxExpansions must be positive.");
}
this.term = term;
this.maxEdits = maxEdits;
this.prefixLength = prefixLength;
this.transpositions = transpositions;
this.maxExpansions = maxExpansions;
setRewriteMethod(new MultiTermQuery.TopTermsBlendedFreqScoringRewrite(maxExpansions));
}
/**
* Calls {@link #FuzzyQuery(Term, int, int, int, boolean)
* FuzzyQuery(term, maxEdits, prefixLength, defaultMaxExpansions, defaultTranspositions)}.
*/
public FuzzyQuery(Term term, int maxEdits, int prefixLength) {
this(term, maxEdits, prefixLength, defaultMaxExpansions, defaultTranspositions);
}
/**
* Calls {@link #FuzzyQuery(Term, int, int) FuzzyQuery(term, maxEdits, defaultPrefixLength)}.
*/
public FuzzyQuery(Term term, int maxEdits) {
this(term, maxEdits, defaultPrefixLength);
}
/**
* Calls {@link #FuzzyQuery(Term, int) FuzzyQuery(term, defaultMaxEdits)}.
*/
public FuzzyQuery(Term term) {
this(term, defaultMaxEdits);
}
/**
* @return the maximum number of edit distances allowed for this query to match.
*/
public int getMaxEdits() {
return maxEdits;
}
/**
* Returns the non-fuzzy prefix length. This is the number of characters at the start
* of a term that must be identical (not fuzzy) to the query term if the query
* is to match that term.
*/
public int getPrefixLength() {
return prefixLength;
}
/**
* Returns true if transpositions should be treated as a primitive edit operation.
* If this is false, comparisons will implement the classic Levenshtein algorithm.
*/
public boolean getTranspositions() {
return transpositions;
}
@Override
protected TermsEnum getTermsEnum(Terms terms, AttributeSource atts) throws IOException {
if (maxEdits == 0 || prefixLength >= term.text().length()) { // can only match if it's exact
return new SingleTermsEnum(terms.iterator(), term.bytes());
}
return new FuzzyTermsEnum(terms, atts, getTerm(), maxEdits, prefixLength, transpositions);
}
/**
* Returns the pattern term.
*/
public Term getTerm() {
return term;
}
@Override
public String toString(String field) {
final StringBuilder buffer = new StringBuilder();
if (!term.field().equals(field)) {
buffer.append(term.field());
buffer.append(":");
}
buffer.append(term.text());
buffer.append('~');
buffer.append(Integer.toString(maxEdits));
buffer.append(ToStringUtils.boost(getBoost()));
return buffer.toString();
}
@Override
public int hashCode() {
final int prime = 31;
int result = super.hashCode();
result = prime * result + maxEdits;
result = prime * result + prefixLength;
result = prime * result + maxExpansions;
result = prime * result + (transpositions ? 0 : 1);
result = prime * result + ((term == null) ? 0 : term.hashCode());
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (!super.equals(obj))
return false;
if (getClass() != obj.getClass())
return false;
FuzzyQuery other = (FuzzyQuery) obj;
if (maxEdits != other.maxEdits)
return false;
if (prefixLength != other.prefixLength)
return false;
if (maxExpansions != other.maxExpansions)
return false;
if (transpositions != other.transpositions)
return false;
if (term == null) {
if (other.term != null)
return false;
} else if (!term.equals(other.term))
return false;
return true;
}
/**
* @deprecated pass integer edit distances instead.
*/
@Deprecated
public final static float defaultMinSimilarity = LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE;
/**
* Helper function to convert from deprecated "minimumSimilarity" fractions
* to raw edit distances.
*
* @param minimumSimilarity scaled similarity
* @param termLen length (in unicode codepoints) of the term.
* @return equivalent number of maxEdits
* @deprecated pass integer edit distances instead.
*/
@Deprecated
public static int floatToEdits(float minimumSimilarity, int termLen) {
if (minimumSimilarity >= 1f) {
return (int) Math.min(minimumSimilarity, LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE);
} else if (minimumSimilarity == 0.0f) {
return 0; // 0 means exact, not infinite # of edits!
} else {
return Math.min((int) ((1D-minimumSimilarity) * termLen),
LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE);
}
}
}