All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.search.LRUQueryCache Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.search;


import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.ConcurrentModificationException;
import java.util.IdentityHashMap;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.atomic.AtomicBoolean;

import org.apache.lucene.index.LeafReader.CoreClosedListener;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.ReaderUtil;
import org.apache.lucene.index.Term;
import org.apache.lucene.util.Accountable;
import org.apache.lucene.util.Accountables;
import org.apache.lucene.util.RamUsageEstimator;
import org.apache.lucene.util.RoaringDocIdSet;

/**
 * A {@link QueryCache} that evicts queries using a LRU (least-recently-used)
 * eviction policy in order to remain under a given maximum size and number of
 * bytes used.
 *
 * This class is thread-safe.
 *
 * Note that query eviction runs in linear time with the total number of
 * segments that have cache entries so this cache works best with
 * {@link QueryCachingPolicy caching policies} that only cache on "large"
 * segments, and it is advised to not share this cache across too many indices.
 *
 * Typical usage looks like this:
 * 
 *   final int maxNumberOfCachedQueries = 256;
 *   final long maxRamBytesUsed = 50 * 1024L * 1024L; // 50MB
 *   // these cache and policy instances can be shared across several queries and readers
 *   // it is fine to eg. store them into static variables
 *   final QueryCache queryCache = new LRUQueryCache(maxNumberOfCachedQueries, maxRamBytesUsed);
 *   final QueryCachingPolicy defaultCachingPolicy = new UsageTrackingQueryCachingPolicy();
 *
 *   // ...
 *
 *   // Then at search time
 *   Query myQuery = ...;
 *   Query myCacheQuery = queryCache.doCache(myQuery, defaultCachingPolicy);
 *   // myCacheQuery is now a wrapper around the original query that will interact with the cache
 *   IndexSearcher searcher = ...;
 *   TopDocs topDocs = searcher.search(new ConstantScoreQuery(myCacheQuery), 10);
 * 
* * This cache exposes some global statistics ({@link #getHitCount() hit count}, * {@link #getMissCount() miss count}, {@link #getCacheSize() number of cache * entries}, {@link #getCacheCount() total number of DocIdSets that have ever * been cached}, {@link #getEvictionCount() number of evicted entries}). In * case you would like to have more fine-grained statistics, such as per-index * or per-query-class statistics, it is possible to override various callbacks: * {@link #onHit}, {@link #onMiss}, * {@link #onQueryCache}, {@link #onQueryEviction}, * {@link #onDocIdSetCache}, {@link #onDocIdSetEviction} and {@link #onClear}. * It is better to not perform heavy computations in these methods though since * they are called synchronously and under a lock. * * @see QueryCachingPolicy * @lucene.experimental */ public class LRUQueryCache implements QueryCache, Accountable { // memory usage of a simple term query static final long QUERY_DEFAULT_RAM_BYTES_USED = 192; static final long HASHTABLE_RAM_BYTES_PER_ENTRY = 2 * RamUsageEstimator.NUM_BYTES_OBJECT_REF // key + value * 2; // hash tables need to be oversized to avoid collisions, assume 2x capacity static final long LINKED_HASHTABLE_RAM_BYTES_PER_ENTRY = HASHTABLE_RAM_BYTES_PER_ENTRY + 2 * RamUsageEstimator.NUM_BYTES_OBJECT_REF; // previous & next references private final int maxSize; private final long maxRamBytesUsed; // maps queries that are contained in the cache to a singleton so that this // cache does not store several copies of the same query private final Map uniqueQueries; // The contract between this set and the per-leaf caches is that per-leaf caches // are only allowed to store sub-sets of the queries that are contained in // mostRecentlyUsedQueries. This is why write operations are performed under a lock private final Set mostRecentlyUsedQueries; private final Map cache; // these variables are volatile so that we do not need to sync reads // but increments need to be performed under the lock private volatile long ramBytesUsed; private volatile long hitCount; private volatile long missCount; private volatile long cacheCount; private volatile long cacheSize; /** * Create a new instance that will cache at most maxSize queries * with at most maxRamBytesUsed bytes of memory. */ public LRUQueryCache(int maxSize, long maxRamBytesUsed) { this.maxSize = maxSize; this.maxRamBytesUsed = maxRamBytesUsed; uniqueQueries = new LinkedHashMap<>(16, 0.75f, true); mostRecentlyUsedQueries = uniqueQueries.keySet(); cache = new IdentityHashMap<>(); ramBytesUsed = 0; } /** * Expert: callback when there is a cache hit on a given query. * Implementing this method is typically useful in order to compute more * fine-grained statistics about the query cache. * @see #onMiss * @lucene.experimental */ protected void onHit(Object readerCoreKey, Query query) { hitCount += 1; } /** * Expert: callback when there is a cache miss on a given query. * @see #onHit * @lucene.experimental */ protected void onMiss(Object readerCoreKey, Query query) { assert query != null; missCount += 1; } /** * Expert: callback when a query is added to this cache. * Implementing this method is typically useful in order to compute more * fine-grained statistics about the query cache. * @see #onQueryEviction * @lucene.experimental */ protected void onQueryCache(Query query, long ramBytesUsed) { this.ramBytesUsed += ramBytesUsed; } /** * Expert: callback when a query is evicted from this cache. * @see #onQueryCache * @lucene.experimental */ protected void onQueryEviction(Query query, long ramBytesUsed) { this.ramBytesUsed -= ramBytesUsed; } /** * Expert: callback when a {@link DocIdSet} is added to this cache. * Implementing this method is typically useful in order to compute more * fine-grained statistics about the query cache. * @see #onDocIdSetEviction * @lucene.experimental */ protected void onDocIdSetCache(Object readerCoreKey, long ramBytesUsed) { cacheSize += 1; cacheCount += 1; this.ramBytesUsed += ramBytesUsed; } /** * Expert: callback when one or more {@link DocIdSet}s are removed from this * cache. * @see #onDocIdSetCache * @lucene.experimental */ protected void onDocIdSetEviction(Object readerCoreKey, int numEntries, long sumRamBytesUsed) { this.ramBytesUsed -= sumRamBytesUsed; cacheSize -= numEntries; } /** * Expert: callback when the cache is completely cleared. * @lucene.experimental */ protected void onClear() { ramBytesUsed = 0; cacheSize = 0; } /** Whether evictions are required. */ boolean requiresEviction() { final int size = mostRecentlyUsedQueries.size(); if (size == 0) { return false; } else { return size > maxSize || ramBytesUsed() > maxRamBytesUsed; } } synchronized DocIdSet get(Query key, LeafReaderContext context) { assert key.getBoost() == 1f; assert key instanceof BoostQuery == false; assert key instanceof ConstantScoreQuery == false; final Object readerKey = context.reader().getCoreCacheKey(); final LeafCache leafCache = cache.get(readerKey); if (leafCache == null) { onMiss(readerKey, key); return null; } // this get call moves the query to the most-recently-used position final Query singleton = uniqueQueries.get(key); if (singleton == null) { onMiss(readerKey, key); return null; } final DocIdSet cached = leafCache.get(singleton); if (cached == null) { onMiss(readerKey, singleton); } else { onHit(readerKey, singleton); } return cached; } synchronized void putIfAbsent(Query query, LeafReaderContext context, DocIdSet set) { // under a lock to make sure that mostRecentlyUsedQueries and cache remain sync'ed // we don't want to have user-provided queries as keys in our cache since queries are mutable assert query instanceof BoostQuery == false; assert query instanceof ConstantScoreQuery == false; assert query.getBoost() == 1f; Query singleton = uniqueQueries.get(query); if (singleton == null) { uniqueQueries.put(query, query); onQueryCache(singleton, LINKED_HASHTABLE_RAM_BYTES_PER_ENTRY + ramBytesUsed(query)); } else { query = singleton; } final Object key = context.reader().getCoreCacheKey(); LeafCache leafCache = cache.get(key); if (leafCache == null) { leafCache = new LeafCache(key); final LeafCache previous = cache.put(context.reader().getCoreCacheKey(), leafCache); ramBytesUsed += HASHTABLE_RAM_BYTES_PER_ENTRY; assert previous == null; // we just created a new leaf cache, need to register a close listener context.reader().addCoreClosedListener(new CoreClosedListener() { @Override public void onClose(Object ownerCoreCacheKey) { clearCoreCacheKey(ownerCoreCacheKey); } }); } leafCache.putIfAbsent(query, set); evictIfNecessary(); } synchronized void evictIfNecessary() { // under a lock to make sure that mostRecentlyUsedQueries and cache keep sync'ed if (requiresEviction()) { Iterator iterator = mostRecentlyUsedQueries.iterator(); do { final Query query = iterator.next(); final int size = mostRecentlyUsedQueries.size(); iterator.remove(); if (size == mostRecentlyUsedQueries.size()) { // size did not decrease, because the hash of the query changed since it has been // put into the cache throw new ConcurrentModificationException("Removal from the cache failed! This " + "is probably due to a query which has been modified after having been put into " + " the cache or a badly implemented clone(). Query class: [" + query.getClass() + "], query: [" + query + "]"); } onEviction(query); } while (iterator.hasNext() && requiresEviction()); } } /** * Remove all cache entries for the given core cache key. */ public synchronized void clearCoreCacheKey(Object coreKey) { final LeafCache leafCache = cache.remove(coreKey); if (leafCache != null) { ramBytesUsed -= HASHTABLE_RAM_BYTES_PER_ENTRY; final int numEntries = leafCache.cache.size(); if (numEntries > 0) { onDocIdSetEviction(coreKey, numEntries, leafCache.ramBytesUsed); } else { assert numEntries == 0; assert leafCache.ramBytesUsed == 0; } } } /** * Remove all cache entries for the given query. */ public synchronized void clearQuery(Query query) { final Query singleton = uniqueQueries.remove(query); if (singleton != null) { onEviction(singleton); } } private void onEviction(Query singleton) { onQueryEviction(singleton, LINKED_HASHTABLE_RAM_BYTES_PER_ENTRY + ramBytesUsed(singleton)); for (LeafCache leafCache : cache.values()) { leafCache.remove(singleton); } } /** * Clear the content of this cache. */ public synchronized void clear() { cache.clear(); mostRecentlyUsedQueries.clear(); onClear(); } // pkg-private for testing synchronized void assertConsistent() { if (requiresEviction()) { throw new AssertionError("requires evictions: size=" + mostRecentlyUsedQueries.size() + ", maxSize=" + maxSize + ", ramBytesUsed=" + ramBytesUsed() + ", maxRamBytesUsed=" + maxRamBytesUsed); } for (LeafCache leafCache : cache.values()) { Set keys = Collections.newSetFromMap(new IdentityHashMap()); keys.addAll(leafCache.cache.keySet()); keys.removeAll(mostRecentlyUsedQueries); if (!keys.isEmpty()) { throw new AssertionError("One leaf cache contains more keys than the top-level cache: " + keys); } } long recomputedRamBytesUsed = HASHTABLE_RAM_BYTES_PER_ENTRY * cache.size() + LINKED_HASHTABLE_RAM_BYTES_PER_ENTRY * uniqueQueries.size(); for (Query query : mostRecentlyUsedQueries) { recomputedRamBytesUsed += ramBytesUsed(query); } for (LeafCache leafCache : cache.values()) { recomputedRamBytesUsed += HASHTABLE_RAM_BYTES_PER_ENTRY * leafCache.cache.size(); for (DocIdSet set : leafCache.cache.values()) { recomputedRamBytesUsed += set.ramBytesUsed(); } } if (recomputedRamBytesUsed != ramBytesUsed) { throw new AssertionError("ramBytesUsed mismatch : " + ramBytesUsed + " != " + recomputedRamBytesUsed); } long recomputedCacheSize = 0; for (LeafCache leafCache : cache.values()) { recomputedCacheSize += leafCache.cache.size(); } if (recomputedCacheSize != getCacheSize()) { throw new AssertionError("cacheSize mismatch : " + getCacheSize() + " != " + recomputedCacheSize); } } // pkg-private for testing // return the list of cached queries in LRU order synchronized List cachedQueries() { return new ArrayList<>(mostRecentlyUsedQueries); } @Override public Weight doCache(Weight weight, QueryCachingPolicy policy) { while (weight instanceof CachingWrapperWeight) { weight = ((CachingWrapperWeight) weight).in; } return new CachingWrapperWeight(weight, policy); } @Override public long ramBytesUsed() { return ramBytesUsed; } @Override public Collection getChildResources() { synchronized (this) { return Accountables.namedAccountables("segment", cache); } } /** * Return the number of bytes used by the given query. The default * implementation returns {@link Accountable#ramBytesUsed()} if the query * implements {@link Accountable} and 1024 otherwise. */ protected long ramBytesUsed(Query query) { if (query instanceof Accountable) { return ((Accountable) query).ramBytesUsed(); } return QUERY_DEFAULT_RAM_BYTES_USED; } /** * Default cache implementation: uses {@link RoaringDocIdSet}. */ protected DocIdSet cacheImpl(BulkScorer scorer, int maxDoc) throws IOException { final RoaringDocIdSet.Builder builder = new RoaringDocIdSet.Builder(maxDoc); scorer.score(new LeafCollector() { @Override public void setScorer(Scorer scorer) throws IOException {} @Override public void collect(int doc) throws IOException { builder.add(doc); } }, null); return builder.build(); } /** * Return the total number of times that a {@link Query} has been looked up * in this {@link QueryCache}. Note that this number is incremented once per * segment so running a cached query only once will increment this counter * by the number of segments that are wrapped by the searcher. * Note that by definition, {@link #getTotalCount()} is the sum of * {@link #getHitCount()} and {@link #getMissCount()}. * @see #getHitCount() * @see #getMissCount() */ public final long getTotalCount() { return getHitCount() + getMissCount(); } /** * Over the {@link #getTotalCount() total} number of times that a query has * been looked up, return how many times a cached {@link DocIdSet} has been * found and returned. * @see #getTotalCount() * @see #getMissCount() */ public final long getHitCount() { return hitCount; } /** * Over the {@link #getTotalCount() total} number of times that a query has * been looked up, return how many times this query was not contained in the * cache. * @see #getTotalCount() * @see #getHitCount() */ public final long getMissCount() { return missCount; } /** * Return the total number of {@link DocIdSet}s which are currently stored * in the cache. * @see #getCacheCount() * @see #getEvictionCount() */ public final long getCacheSize() { return cacheSize; } /** * Return the total number of cache entries that have been generated and put * in the cache. It is highly desirable to have a {@link #getHitCount() hit * count} that is much higher than the {@link #getCacheCount() cache count} * as the opposite would indicate that the query cache makes efforts in order * to cache queries but then they do not get reused. * @see #getCacheSize() * @see #getEvictionCount() */ public final long getCacheCount() { return cacheCount; } /** * Return the number of cache entries that have been removed from the cache * either in order to stay under the maximum configured size/ram usage, or * because a segment has been closed. High numbers of evictions might mean * that queries are not reused or that the {@link QueryCachingPolicy * caching policy} caches too aggressively on NRT segments which get merged * early. * @see #getCacheCount() * @see #getCacheSize() */ public final long getEvictionCount() { return getCacheCount() - getCacheSize(); } // this class is not thread-safe, everything but ramBytesUsed needs to be called under a lock private class LeafCache implements Accountable { private final Object key; private final Map cache; private volatile long ramBytesUsed; LeafCache(Object key) { this.key = key; cache = new IdentityHashMap<>(); ramBytesUsed = 0; } private void onDocIdSetCache(long ramBytesUsed) { this.ramBytesUsed += ramBytesUsed; LRUQueryCache.this.onDocIdSetCache(key, ramBytesUsed); } private void onDocIdSetEviction(long ramBytesUsed) { this.ramBytesUsed -= ramBytesUsed; LRUQueryCache.this.onDocIdSetEviction(key, 1, ramBytesUsed); } DocIdSet get(Query query) { assert query instanceof BoostQuery == false; assert query instanceof ConstantScoreQuery == false; assert query.getBoost() == 1f; return cache.get(query); } void putIfAbsent(Query query, DocIdSet set) { assert query instanceof BoostQuery == false; assert query instanceof ConstantScoreQuery == false; assert query.getBoost() == 1f; if (cache.containsKey(query) == false) { cache.put(query, set); // the set was actually put onDocIdSetCache(HASHTABLE_RAM_BYTES_PER_ENTRY + set.ramBytesUsed()); } } void remove(Query query) { assert query instanceof BoostQuery == false; assert query instanceof ConstantScoreQuery == false; assert query.getBoost() == 1f; DocIdSet removed = cache.remove(query); if (removed != null) { onDocIdSetEviction(HASHTABLE_RAM_BYTES_PER_ENTRY + removed.ramBytesUsed()); } } @Override public long ramBytesUsed() { return ramBytesUsed; } @Override public Collection getChildResources() { return Collections.emptyList(); } } private class CachingWrapperWeight extends ConstantScoreWeight { private final Weight in; private final QueryCachingPolicy policy; // we use an AtomicBoolean because Weight.scorer may be called from multiple // threads when IndexSearcher is created with threads private final AtomicBoolean used; CachingWrapperWeight(Weight in, QueryCachingPolicy policy) { super(in.getQuery()); this.in = in; this.policy = policy; used = new AtomicBoolean(false); } @Override public void extractTerms(Set terms) { in.extractTerms(terms); } private boolean cacheEntryHasReasonableWorstCaseSize(int maxDoc) { // The worst-case (dense) is a bit set which needs one bit per document final long worstCaseRamUsage = maxDoc / 8; final long totalRamAvailable = maxRamBytesUsed; // Imagine the worst-case that a cache entry is large than the size of // the cache: not only will this entry be trashed immediately but it // will also evict all current entries from the cache. For this reason // we only cache on an IndexReader if we have available room for // 5 different filters on this reader to avoid excessive trashing return worstCaseRamUsage * 5 < totalRamAvailable; } private DocIdSet cache(LeafReaderContext context) throws IOException { final BulkScorer scorer = in.bulkScorer(context); if (scorer == null) { return DocIdSet.EMPTY; } else { return cacheImpl(scorer, context.reader().maxDoc()); } } private boolean shouldCache(LeafReaderContext context) throws IOException { return cacheEntryHasReasonableWorstCaseSize(ReaderUtil.getTopLevelContext(context).reader().maxDoc()) && policy.shouldCache(in.getQuery(), context); } @Override public Scorer scorer(LeafReaderContext context) throws IOException { if (used.compareAndSet(false, true)) { policy.onUse(getQuery()); } DocIdSet docIdSet = get(in.getQuery(), context); if (docIdSet == null) { if (shouldCache(context)) { docIdSet = cache(context); putIfAbsent(in.getQuery(), context, docIdSet); } else { return in.scorer(context); } } assert docIdSet != null; if (docIdSet == DocIdSet.EMPTY) { return null; } final DocIdSetIterator disi = docIdSet.iterator(); if (disi == null) { return null; } return new ConstantScoreScorer(this, 0f, disi); } @Override public BulkScorer bulkScorer(LeafReaderContext context) throws IOException { if (used.compareAndSet(false, true)) { policy.onUse(getQuery()); } DocIdSet docIdSet = get(in.getQuery(), context); if (docIdSet == null) { if (shouldCache(context)) { docIdSet = cache(context); putIfAbsent(in.getQuery(), context, docIdSet); } else { return in.bulkScorer(context); } } assert docIdSet != null; if (docIdSet == DocIdSet.EMPTY) { return null; } final DocIdSetIterator disi = docIdSet.iterator(); if (disi == null) { return null; } return new DefaultBulkScorer(new ConstantScoreScorer(this, 0f, disi)); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy