All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.search.similarities.BM25Similarity Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.search.similarities;


import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.lucene.index.FieldInvertState;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.NumericDocValues;
import org.apache.lucene.search.CollectionStatistics;
import org.apache.lucene.search.Explanation;
import org.apache.lucene.search.TermStatistics;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.SmallFloat;

/**
 * BM25 Similarity. Introduced in Stephen E. Robertson, Steve Walker,
 * Susan Jones, Micheline Hancock-Beaulieu, and Mike Gatford. Okapi at TREC-3.
 * In Proceedings of the Third Text REtrieval Conference (TREC 1994).
 * Gaithersburg, USA, November 1994.
 * @lucene.experimental
 */
public class BM25Similarity extends Similarity {
  private final float k1;
  private final float b;
  // TODO: should we add a delta like sifaka.cs.uiuc.edu/~ylv2/pub/sigir11-bm25l.pdf ?

  /**
   * BM25 with the supplied parameter values.
   * @param k1 Controls non-linear term frequency normalization (saturation).
   * @param b Controls to what degree document length normalizes tf values.
   * @throws IllegalArgumentException if {@code k1} is infinite or negative, or if {@code b} is 
   *         not within the range {@code [0..1]}
   */
  public BM25Similarity(float k1, float b) {
    if (Float.isNaN(k1) || Float.isInfinite(k1) || k1 < 0) {
      throw new IllegalArgumentException("illegal k1 value: " + k1 + ", must be a non-negative finite value");
    }
    if (Float.isNaN(b) || b < 0 || b > 1) {
      throw new IllegalArgumentException("illegal b value: " + b + ", must be between 0 and 1");
    }
    this.k1 = k1;
    this.b  = b;
  }
  
  /** BM25 with these default values:
   * 
    *
  • {@code k1 = 1.2}, *
  • {@code b = 0.75}.
  • *
*/ public BM25Similarity() { this(1.2f, 0.75f); } /** Implemented as log(1 + (numDocs - docFreq + 0.5)/(docFreq + 0.5)). */ protected float idf(long docFreq, long numDocs) { return (float) Math.log(1 + (numDocs - docFreq + 0.5D)/(docFreq + 0.5D)); } /** Implemented as 1 / (distance + 1). */ protected float sloppyFreq(int distance) { return 1.0f / (distance + 1); } /** The default implementation returns 1 */ protected float scorePayload(int doc, int start, int end, BytesRef payload) { return 1; } /** The default implementation computes the average as sumTotalTermFreq / maxDoc, * or returns 1 if the index does not store sumTotalTermFreq: * any field that omits frequency information). */ protected float avgFieldLength(CollectionStatistics collectionStats) { final long sumTotalTermFreq = collectionStats.sumTotalTermFreq(); if (sumTotalTermFreq <= 0) { return 1f; // field does not exist, or stat is unsupported } else { return (float) (sumTotalTermFreq / (double) collectionStats.maxDoc()); } } /** The default implementation encodes boost / sqrt(length) * with {@link SmallFloat#floatToByte315(float)}. This is compatible with * Lucene's default implementation. If you change this, then you should * change {@link #decodeNormValue(byte)} to match. */ protected byte encodeNormValue(float boost, int fieldLength) { return SmallFloat.floatToByte315(boost / (float) Math.sqrt(fieldLength)); } /** The default implementation returns 1 / f2 * where f is {@link SmallFloat#byte315ToFloat(byte)}. */ protected float decodeNormValue(byte b) { return NORM_TABLE[b & 0xFF]; } /** * True if overlap tokens (tokens with a position of increment of zero) are * discounted from the document's length. */ protected boolean discountOverlaps = true; /** Sets whether overlap tokens (Tokens with 0 position increment) are * ignored when computing norm. By default this is true, meaning overlap * tokens do not count when computing norms. */ public void setDiscountOverlaps(boolean v) { discountOverlaps = v; } /** * Returns true if overlap tokens are discounted from the document's length. * @see #setDiscountOverlaps */ public boolean getDiscountOverlaps() { return discountOverlaps; } /** Cache of decoded bytes. */ private static final float[] NORM_TABLE = new float[256]; static { for (int i = 1; i < 256; i++) { float f = SmallFloat.byte315ToFloat((byte)i); NORM_TABLE[i] = 1.0f / (f*f); } NORM_TABLE[0] = 1.0f / NORM_TABLE[255]; // otherwise inf } @Override public final long computeNorm(FieldInvertState state) { final int numTerms = discountOverlaps ? state.getLength() - state.getNumOverlap() : state.getLength(); return encodeNormValue(state.getBoost(), numTerms); } /** * Computes a score factor for a simple term and returns an explanation * for that score factor. * *

* The default implementation uses: * *

   * idf(docFreq, searcher.maxDoc());
   * 
* * Note that {@link CollectionStatistics#maxDoc()} is used instead of * {@link org.apache.lucene.index.IndexReader#numDocs() IndexReader#numDocs()} because also * {@link TermStatistics#docFreq()} is used, and when the latter * is inaccurate, so is {@link CollectionStatistics#maxDoc()}, and in the same direction. * In addition, {@link CollectionStatistics#maxDoc()} is more efficient to compute * * @param collectionStats collection-level statistics * @param termStats term-level statistics for the term * @return an Explain object that includes both an idf score factor and an explanation for the term. */ public Explanation idfExplain(CollectionStatistics collectionStats, TermStatistics termStats) { final long df = termStats.docFreq(); final long max = collectionStats.maxDoc(); final float idf = idf(df, max); return Explanation.match(idf, "idf(docFreq=" + df + ", maxDocs=" + max + ")"); } /** * Computes a score factor for a phrase. * *

* The default implementation sums the idf factor for * each term in the phrase. * * @param collectionStats collection-level statistics * @param termStats term-level statistics for the terms in the phrase * @return an Explain object that includes both an idf * score factor for the phrase and an explanation * for each term. */ public Explanation idfExplain(CollectionStatistics collectionStats, TermStatistics termStats[]) { final long max = collectionStats.maxDoc(); float idf = 0.0f; List details = new ArrayList<>(); for (final TermStatistics stat : termStats ) { final long df = stat.docFreq(); final float termIdf = idf(df, max); details.add(Explanation.match(termIdf, "idf(docFreq=" + df + ", maxDocs=" + max + ")")); idf += termIdf; } return Explanation.match(idf, "idf(), sum of:", details); } @Override public final SimWeight computeWeight(CollectionStatistics collectionStats, TermStatistics... termStats) { Explanation idf = termStats.length == 1 ? idfExplain(collectionStats, termStats[0]) : idfExplain(collectionStats, termStats); float avgdl = avgFieldLength(collectionStats); // compute freq-independent part of bm25 equation across all norm values float cache[] = new float[256]; for (int i = 0; i < cache.length; i++) { cache[i] = k1 * ((1 - b) + b * decodeNormValue((byte)i) / avgdl); } return new BM25Stats(collectionStats.field(), idf, avgdl, cache); } @Override public final SimScorer simScorer(SimWeight stats, LeafReaderContext context) throws IOException { BM25Stats bm25stats = (BM25Stats) stats; return new BM25DocScorer(bm25stats, context.reader().getNormValues(bm25stats.field)); } private class BM25DocScorer extends SimScorer { private final BM25Stats stats; private final float weightValue; // boost * idf * (k1 + 1) private final NumericDocValues norms; private final float[] cache; BM25DocScorer(BM25Stats stats, NumericDocValues norms) throws IOException { this.stats = stats; this.weightValue = stats.weight * (k1 + 1); this.cache = stats.cache; this.norms = norms; } @Override public float score(int doc, float freq) { // if there are no norms, we act as if b=0 float norm = norms == null ? k1 : cache[(byte)norms.get(doc) & 0xFF]; return weightValue * freq / (freq + norm); } @Override public Explanation explain(int doc, Explanation freq) { return explainScore(doc, freq, stats, norms); } @Override public float computeSlopFactor(int distance) { return sloppyFreq(distance); } @Override public float computePayloadFactor(int doc, int start, int end, BytesRef payload) { return scorePayload(doc, start, end, payload); } } /** Collection statistics for the BM25 model. */ private static class BM25Stats extends SimWeight { /** BM25's idf */ private final Explanation idf; /** The average document length. */ private final float avgdl; /** query boost */ private float boost; /** weight (idf * boost) */ private float weight; /** field name, for pulling norms */ private final String field; /** precomputed norm[256] with k1 * ((1 - b) + b * dl / avgdl) */ private final float cache[]; BM25Stats(String field, Explanation idf, float avgdl, float cache[]) { this.field = field; this.idf = idf; this.avgdl = avgdl; this.cache = cache; normalize(1f, 1f); } @Override public float getValueForNormalization() { // we return a TF-IDF like normalization to be nice, but we don't actually normalize ourselves. return weight * weight; } @Override public void normalize(float queryNorm, float boost) { // we don't normalize with queryNorm at all, we just capture the top-level boost this.boost = boost; this.weight = idf.getValue() * boost; } } private Explanation explainTFNorm(int doc, Explanation freq, BM25Stats stats, NumericDocValues norms) { List subs = new ArrayList<>(); subs.add(freq); subs.add(Explanation.match(k1, "parameter k1")); if (norms == null) { subs.add(Explanation.match(0, "parameter b (norms omitted for field)")); return Explanation.match( (freq.getValue() * (k1 + 1)) / (freq.getValue() + k1), "tfNorm, computed from:", subs); } else { float doclen = decodeNormValue((byte)norms.get(doc)); subs.add(Explanation.match(b, "parameter b")); subs.add(Explanation.match(stats.avgdl, "avgFieldLength")); subs.add(Explanation.match(doclen, "fieldLength")); return Explanation.match( (freq.getValue() * (k1 + 1)) / (freq.getValue() + k1 * (1 - b + b * doclen/stats.avgdl)), "tfNorm, computed from:", subs); } } private Explanation explainScore(int doc, Explanation freq, BM25Stats stats, NumericDocValues norms) { Explanation boostExpl = Explanation.match(stats.boost, "boost"); List subs = new ArrayList<>(); if (boostExpl.getValue() != 1.0f) subs.add(boostExpl); subs.add(stats.idf); Explanation tfNormExpl = explainTFNorm(doc, freq, stats, norms); subs.add(tfNormExpl); return Explanation.match( boostExpl.getValue() * stats.idf.getValue() * tfNormExpl.getValue(), "score(doc="+doc+",freq="+freq+"), product of:", subs); } @Override public String toString() { return "BM25(k1=" + k1 + ",b=" + b + ")"; } /** * Returns the k1 parameter * @see #BM25Similarity(float, float) */ public float getK1() { return k1; } /** * Returns the b parameter * @see #BM25Similarity(float, float) */ public float getB() { return b; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy