All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.lucene.search.similarities.DFRSimilarity Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.search.similarities;


import java.util.List;

import org.apache.lucene.search.Explanation;
import org.apache.lucene.search.similarities.AfterEffect.NoAfterEffect;
import org.apache.lucene.search.similarities.Normalization.NoNormalization;

/**
 * Implements the divergence from randomness (DFR) framework
 * introduced in Gianni Amati and Cornelis Joost Van Rijsbergen. 2002.
 * Probabilistic models of information retrieval based on measuring the
 * divergence from randomness. ACM Trans. Inf. Syst. 20, 4 (October 2002),
 * 357-389.
 * 

The DFR scoring formula is composed of three separate components: the * basic model, the aftereffect and an additional * normalization component, represented by the classes * {@code BasicModel}, {@code AfterEffect} and {@code Normalization}, * respectively. The names of these classes were chosen to match the names of * their counterparts in the Terrier IR engine.

*

To construct a DFRSimilarity, you must specify the implementations for * all three components of DFR: *

    *
  1. {@link BasicModel}: Basic model of information content: *
      *
    • {@link BasicModelBE}: Limiting form of Bose-Einstein *
    • {@link BasicModelG}: Geometric approximation of Bose-Einstein *
    • {@link BasicModelP}: Poisson approximation of the Binomial *
    • {@link BasicModelD}: Divergence approximation of the Binomial *
    • {@link BasicModelIn}: Inverse document frequency *
    • {@link BasicModelIne}: Inverse expected document * frequency [mixture of Poisson and IDF] *
    • {@link BasicModelIF}: Inverse term frequency * [approximation of I(ne)] *
    *
  2. {@link AfterEffect}: First normalization of information * gain: *
      *
    • {@link AfterEffectL}: Laplace's law of succession *
    • {@link AfterEffectB}: Ratio of two Bernoulli processes *
    • {@link NoAfterEffect}: no first normalization *
    *
  3. {@link Normalization}: Second (length) normalization: *
      *
    • {@link NormalizationH1}: Uniform distribution of term * frequency *
    • {@link NormalizationH2}: term frequency density inversely * related to length *
    • {@link NormalizationH3}: term frequency normalization * provided by Dirichlet prior *
    • {@link NormalizationZ}: term frequency normalization provided * by a Zipfian relation *
    • {@link NoNormalization}: no second normalization *
    *
*

Note that qtf, the multiplicity of term-occurrence in the query, * is not handled by this implementation.

* @see BasicModel * @see AfterEffect * @see Normalization * @lucene.experimental */ public class DFRSimilarity extends SimilarityBase { /** The basic model for information content. */ protected final BasicModel basicModel; /** The first normalization of the information content. */ protected final AfterEffect afterEffect; /** The term frequency normalization. */ protected final Normalization normalization; /** * Creates DFRSimilarity from the three components. *

* Note that null values are not allowed: * if you want no normalization or after-effect, instead pass * {@link NoNormalization} or {@link NoAfterEffect} respectively. * @param basicModel Basic model of information content * @param afterEffect First normalization of information gain * @param normalization Second (length) normalization */ public DFRSimilarity(BasicModel basicModel, AfterEffect afterEffect, Normalization normalization) { if (basicModel == null || afterEffect == null || normalization == null) { throw new NullPointerException("null parameters not allowed."); } this.basicModel = basicModel; this.afterEffect = afterEffect; this.normalization = normalization; } @Override protected float score(BasicStats stats, float freq, float docLen) { float tfn = normalization.tfn(stats, freq, docLen); return stats.getBoost() * basicModel.score(stats, tfn) * afterEffect.score(stats, tfn); } @Override protected void explain(List subs, BasicStats stats, int doc, float freq, float docLen) { if (stats.getBoost() != 1.0f) { subs.add(Explanation.match(stats.getBoost(), "boost")); } Explanation normExpl = normalization.explain(stats, freq, docLen); float tfn = normExpl.getValue(); subs.add(normExpl); subs.add(basicModel.explain(stats, tfn)); subs.add(afterEffect.explain(stats, tfn)); } @Override public String toString() { return "DFR " + basicModel.toString() + afterEffect.toString() + normalization.toString(); } /** * Returns the basic model of information content */ public BasicModel getBasicModel() { return basicModel; } /** * Returns the first normalization */ public AfterEffect getAfterEffect() { return afterEffect; } /** * Returns the second normalization */ public Normalization getNormalization() { return normalization; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy