org.apache.lucene.search.similarities.LMDirichletSimilarity Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.search.similarities;
import java.util.List;
import java.util.Locale;
import org.apache.lucene.search.Explanation;
/**
* Bayesian smoothing using Dirichlet priors. From Chengxiang Zhai and John
* Lafferty. 2001. A study of smoothing methods for language models applied to
* Ad Hoc information retrieval. In Proceedings of the 24th annual international
* ACM SIGIR conference on Research and development in information retrieval
* (SIGIR '01). ACM, New York, NY, USA, 334-342.
*
* The formula as defined the paper assigns a negative score to documents that
* contain the term, but with fewer occurrences than predicted by the collection
* language model. The Lucene implementation returns {@code 0} for such
* documents.
*
*
* @lucene.experimental
*/
public class LMDirichletSimilarity extends LMSimilarity {
/** The μ parameter. */
private final float mu;
/** Instantiates the similarity with the provided μ parameter. */
public LMDirichletSimilarity(CollectionModel collectionModel, float mu) {
super(collectionModel);
this.mu = mu;
}
/** Instantiates the similarity with the provided μ parameter. */
public LMDirichletSimilarity(float mu) {
this.mu = mu;
}
/** Instantiates the similarity with the default μ value of 2000. */
public LMDirichletSimilarity(CollectionModel collectionModel) {
this(collectionModel, 2000);
}
/** Instantiates the similarity with the default μ value of 2000. */
public LMDirichletSimilarity() {
this(2000);
}
@Override
protected float score(BasicStats stats, float freq, float docLen) {
float score = stats.getBoost() * (float)(Math.log(1 + freq /
(mu * ((LMStats)stats).getCollectionProbability())) +
Math.log(mu / (docLen + mu)));
return score > 0.0f ? score : 0.0f;
}
@Override
protected void explain(List subs, BasicStats stats, int doc,
float freq, float docLen) {
if (stats.getBoost() != 1.0f) {
subs.add(Explanation.match(stats.getBoost(), "boost"));
}
subs.add(Explanation.match(mu, "mu"));
Explanation weightExpl = Explanation.match(
(float)Math.log(1 + freq /
(mu * ((LMStats)stats).getCollectionProbability())),
"term weight");
subs.add(weightExpl);
subs.add(Explanation.match(
(float)Math.log(mu / (docLen + mu)), "document norm"));
super.explain(subs, stats, doc, freq, docLen);
}
/** Returns the μ parameter. */
public float getMu() {
return mu;
}
@Override
public String getName() {
return String.format(Locale.ROOT, "Dirichlet(%f)", getMu());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy